astressin-2b and Musculoskeletal-Pain

astressin-2b has been researched along with Musculoskeletal-Pain* in 1 studies

Other Studies

1 other study(ies) available for astressin-2b and Musculoskeletal-Pain

ArticleYear
Forced swim-induced musculoskeletal hyperalgesia is mediated by CRF2 receptors but not by TRPV1 receptors.
    Neuropharmacology, 2013, Volume: 72

    The exacerbation of musculoskeletal pain by stress in humans is modeled by the musculoskeletal hyperalgesia in rodents following a forced swim. We hypothesized that stress-sensitive corticotropin releasing factor (CRF) receptors and transient receptor vanilloid 1 (TRPV1) receptors are responsible for the swim stress-induced musculoskeletal hyperalgesia. We confirmed that a cold swim (26 °C) caused a transient, morphine-sensitive decrease in grip force responses reflecting musculoskeletal hyperalgesia in mice. Pretreatment with the CRF2 receptor antagonist astressin 2B, but not the CRF1 receptor antagonist NBI-35965, attenuated this hyperalgesia. Desensitizing the TRPV1 receptor centrally or peripherally using desensitizing doses of resiniferatoxin (RTX) failed to prevent the musculoskeletal hyperalgesia produced by cold swim. SB-366791, a TRPV1 antagonist, also failed to influence swim-induced hyperalgesia. Together these data indicate that swim stress-induced musculoskeletal hyperalgesia is mediated, in part, by CRF2 receptors but is independent of the TRPV1 receptor.

    Topics: Acenaphthenes; Analgesics; Analysis of Variance; Animals; Body Weight; Cold Temperature; Disease Models, Animal; Diterpenes; Female; Hyperalgesia; Mice; Morphine; Muscle Strength; Musculoskeletal Pain; Pain Measurement; Peptide Fragments; Peptides, Cyclic; Reaction Time; Receptors, Corticotropin-Releasing Hormone; Swimming; TRPV Cation Channels

2013