astaxanthine has been researched along with Weight-Loss* in 3 studies
3 other study(ies) available for astaxanthine and Weight-Loss
Article | Year |
---|---|
Astaxanthin Supplementation Assists Sorafenib in Slowing Skeletal Muscle Atrophy in H22 Tumor-Bearing Mice via Reversing Abnormal Glucose Metabolism.
Cachexia, which is often marked by skeletal muscular atrophy, is one of the leading causes of death in cancer patients. Astaxanthin, a carotenoid obtained from marine organisms that can aid in the prevention and treatment of a variety of disorders. In this study, to assess whether astaxanthin ameliorates weight loss and skeletal muscle atrophy in sorafenib-treated hepatocellular carcinoma mice is aimed.. The findings show the significant potential of astaxanthin as nutritional supplements for cancer patients, as well as the notion that nutritional interventions should be implemented at the initiation of cancer treatment, as instead of waiting until cachexia sets in. Topics: Animals; Cachexia; Dietary Supplements; Glucose; Mice; Muscle, Skeletal; Muscular Atrophy; Phosphatidylinositol 3-Kinases; Sorafenib; Weight Loss | 2023 |
Effects of astaxanthin on sensory-motor function in a compression model of spinal cord injury: Involvement of ERK and AKT signalling pathway.
Spinal cord injury (SCI) causes continuous neurological deficits and major sensory-motor impairments. There is no effective treatment to enhance sensory-motor function following SCI. Thus, it is crucial to develop novel therapeutics for this particular patient population. Astaxanthin (AST) is a strong antioxidant, anti-inflammatory and anti-apoptotic agent. In the present study, it was tested in a severe compression SCI model with emphasis on sensory-motor outcomes, signalling pathway, along with other complications.. A severe SCI was induced by compression of the rat thoracic spinal cord with an aneurysm clip and treatment with AST or the vehicle was carried out, 30 min after injury. Behavioural tests including open field, von Frey, hot plate and BBB were performed weekly to 28 days post-injury. Rats were assigned to measure blood glucose, weight and auricle temperature. Western blot and histological analysis also were performed at the same time points.. AST decreased mechanical and thermal pain and also improved motor function performance, reduced blood glucose and auricle temperature increases and attenuated weight loss in SCI rats. Western blot analysis showed decreased activation of ERK1/2 and increased activation of AKT following AST treatment. The histology results revealed that AST considerably preserved myelinated white matter and the number of motor neurons following SCI.. Taken together, the beneficial effects of AST to improve sensory-motor outcomes, attenuate pathological tissue damage and modulate ERK and AKT signalling pathways following SCI, suggest it as a strong therapeutic agent towards clinical applications.. Spinal cord injury (SCI) impairs sensory-motor function and causes complications, which astaxanthin (AST) has the potential to be used as a treatment for. The present study investigates the effects of AST in a compression model of SCI with emphasis on sensory-motor outcomes alongside other complications, histopathological damage and also related signalling pathways. Topics: Animals; Blood Glucose; Body Temperature; Male; MAP Kinase Signaling System; Motor Neurons; Movement; Pain Perception; Proto-Oncogene Proteins c-akt; Rats; Sensation; Signal Transduction; Spinal Cord; Spinal Cord Compression; Spinal Cord Injuries; Thoracic Vertebrae; Weight Loss; White Matter; Xanthophylls | 2019 |
Nutritional treatment of cancer cachexia in rats. Use of a diet formulated with a crayfish enzymatic extract.
Terminal cancer-associated cachexia, characterized by a marked weight loss, anorexia, asthenia and anemia, is usually associated with a malnutrition status.. To investigate whether a diet formulated with a crayfish enzymatic extract, enriched in essential amino acids, omega-3 fatty acids, and astaxanthin, would be effective for the treatment of cancer-associated cachexias, by decreasing mortality and morbidity rates in cachectic rats and/or improving survival.. Two types of diet were used: a standard diet and one formulated with crayfish enzymatic extract. Rats were divided into two groups (24 animals per group): one without tumor (T-) and the other with tumor (T+) (AH-130 Yoshida ascites hepatoma). Each group was further divided into two subgroups (12 animals per subgroup). Two subgroups (T-(standard) and T+(standard)) were fed the standard diet and the other two (T-(CFEE) and T+(CFEE)) the crayfish enzymatic extract one for four weeks, after which different tissue and plasma parameters were studied.. The implantation of the tumor resulted in a considerable loss of muscle and adipose tissue mass in both groups, but the loss of muscle and fat was lower in the group fed the crayfish enzymatic extract diet. There was also a concomitant increase in the plasma concentration of TNF-alpha, although the increase was smaller in the crayfish enzymatic extract-treated group.. This study shows that although the treatment of cachetic rats with the crayfish enzymatic extract diet did not revert the cachexia, it increased survival (57.1% vs. 25.9% in the group treated with crayfish enzymatic extract and standard diets, respectively) and meliorated the cachexia symptoms--anorexia and body mass loss (muscle and adipose tissue). Topics: Animals; Anorexia; Astacoidea; Body Composition; Cachexia; Dietary Supplements; Fatty Acids, Omega-3; Male; Neoplasms; Nutritional Status; Random Allocation; Rats; Rats, Wistar; Survival; Time Factors; Weight Loss; Xanthophylls | 2007 |