astaxanthine has been researched along with Subarachnoid-Hemorrhage* in 7 studies
7 other study(ies) available for astaxanthine and Subarachnoid-Hemorrhage
Article | Year |
---|---|
Astaxanthin mitigates subarachnoid hemorrhage injury primarily by increasing sirtuin 1 and inhibiting the Toll-like receptor 4 signaling pathway.
Inflammation plays a key role in the progression of subarachnoid hemorrhage (SAH). Here, we examined the effects of astaxanthin (ATX) on the inflammatory response and secondary damage after SAH and the underlying mechanisms of action. In vivo, a prechiasmatic cistern injection model was established in rats and mice. In addition, neuron-microglia cocultures were exposed to oxyhemoglobin to mimic SAH in vitro. Western blotting revealed that protein expression of TLR4 was markedly increased in microglia at 24 h after SAH, with consequent increases in the downstream molecules myeloid differentiation factor 88 and NF-кB. Treatment with ATX significantly inhibited the TLR4 activation, increased sirtuin 1 expression, and inhibited the subsequent inflammatory response both in vivo and in vitro. ATX also significantly decreased high-mobility group box 1 nuclear translocation and secretion in neurons, an effect that was reversed by the sirtuin 1-specific inhibitor sirtinol. ATX administered 4 h after SAH ameliorated cerebral inflammation, brain edema, and neuronal death and improved neurologic function. ATX reduced neuronal death but did not improve neurologic function in TLR4 knockout mice. These results suggest that ATX reduces the proinflammatory response and secondary brain injury after SAH, primarily by increasing sirtuin 1 levels and inhibiting the TLR4 signaling pathway.-Zhang, X., Lu, Y., Wu, Q., Dai, H., Li, W., Lv, S., Zhou, X., Zhang, X., Hang, C., Wang, J. Astaxanthin mitigates subarachnoid hemorrhage injury primarily by increasing sirtuin 1 and inhibiting the Toll-like receptor 4 signaling pathway. Topics: Animals; Disease Models, Animal; Female; Inflammation; Male; Mice; Mice, Knockout; Neuroprotective Agents; NF-kappa B; Rats; Rats, Sprague-Dawley; Signal Transduction; Sirtuin 1; Subarachnoid Hemorrhage; Toll-Like Receptor 4; Xanthophylls | 2019 |
Protective effects of astaxanthin on subarachnoid hemorrhage-induced early brain injury: Reduction of cerebral vasospasm and improvement of neuron survival and mitochondrial function.
The purpose of this study was to evaluate the neuroprotective effects of astaxanthin on early brain injury (EBI) caused by subarachnoid hemorrhage (SAH) in rats and to explore possible molecular mechanisms. Experimental SAH model was introduced in adult male SD rats by injecting autologous arterial blood into the prechiasmatic cistern. Astaxanthin (75 mg/kg bodyweight) or olive oil was administered by oral gavage at 3 h after SAH. Our results showed that astaxanthin attenuated SAH-induced cerebral vasospasm and reduced neuronal apoptosis. Astaxanthin inhibited mitochondria-associated neuron apoptosis in the prefrontal cortex after SAH: increased mitochondrial membrane potential, decreased Bax/Bcl-2 ratio, inhibited cytochrome C release in cytoplasm, and suppressed caspase-3 enzyme activity. Furthermore, the cerebral expression levels of synaptic proteins (Synapsin-1, postsynaptic density-95 and growth-associated protein-43) and nerve growth and neuronal differentiation factors (brain-derived neurotropic factor and purine-rich binding protein-alpha) were reduced following SAH. Astaxanthin partly restored their expression. In conclusion, our current work demonstrates that astaxanthin attenuates SAH-induced EBI, possibly by improving neuronal survival and mitochondrial function. Topics: Animals; Apoptosis; Brain Chemistry; Brain Injuries; Male; Mitochondria; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Staining and Labeling; Subarachnoid Hemorrhage; Vasospasm, Intracranial; Xanthophylls | 2019 |
Astaxanthin reduces matrix metalloproteinase-9 expression and activity in the brain after experimental subarachnoid hemorrhage in rats.
We have previously shown that astaxanthin (ATX) reduces the blood-brain barrier (BBB) disruption and neurovascular dysfunction following subarachnoid hemorrhage (SAH) insults. However, the underlying mechanisms remain unclear. It is known that the matrix metalloproteinases (MMPs), especially matrix metalloproteinase-9 (MMP-9) plays a crucial role in the pathogenesis of secondary brain injury after SAH. And ATX has the ability to regulate MMP-9 in other models. Herein, we investigated whether ATX could ameliorate MMP-9 activation and expression in a rat model of SAH. A total of 144 rats were randomly divided into the following groups: control group (n=36), SAH group (n=36), SAH+vehicle group (n=36), and SAH+ATX group (n=36). The SAH model was induced by injection of 0.3 ml autologous blood into the prechiasmatic cistern. ATX (20 μl of 0.1 mmol) or vehicle was administered intracerebroventricularly 30 min after SAH induction. Mortality, neurological function, brain edema and blood-brain barrier (BBB) permeability were measured at 24 and 72 h after SAH. Biochemical and zymographic methods were used to analyze MMP-9 expression and activity in brain samples. Immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining were also evaluated at 24h. Our data indicated that ATX could significantly reduce the expression and activity of MMP-9, leading to the amelioration of brain edema, BBB impairment, neurological deficits and TUNEL-positive cells at 24h but not 72 h after SAH. The ATX-mediated down-regulation of MMP-9 was correlated with the decreased levels of IL-1β, TNF-α, oxidative stress, activated microglia and infiltrating neutrophils. These results suggest that the neurovascular protection of ATX in SAH is partly associated with the inhibition of MMP-9 expression and activity. Topics: Analysis of Variance; Animals; Blood-Retinal Barrier; Brain; Brain Edema; Capillary Permeability; Disease Models, Animal; Gene Expression Regulation, Enzymologic; In Situ Nick-End Labeling; Male; Malondialdehyde; Matrix Metalloproteinase 9; Neurologic Examination; Rats; Rats, Sprague-Dawley; Subarachnoid Hemorrhage; Time Factors; Xanthophylls | 2015 |
Amelioration of oxidative stress and protection against early brain injury by astaxanthin after experimental subarachnoid hemorrhage.
OBJECT.: Aneurysmal subarachnoid hemorrhage (SAH) causes devastating rates of mortality and morbidity. Accumulating studies indicate that early brain injury (EBI) greatly contributes to poor outcomes after SAH and that oxidative stress plays an important role in the development of EBI following SAH. Astaxanthin (ATX), one of the most common carotenoids, has a powerful antioxidative property. However, the potential role of ATX in protecting against EBI after SAH remains obscure. The goal of this study was to assess whether ATX can attenuate SAH-induced brain edema, blood-brain barrier permeability, neural cell death, and neurological deficits, and to elucidate whether the mechanisms of ATX against EBI are related to its powerful antioxidant property.. Two experimental SAH models were established, including a prechiasmatic cistern SAH model in rats and a one-hemorrhage SAH model in rabbits. Both intracerebroventricular injection and oral administration of ATX were evaluated in this experiment. Posttreatment assessments included neurological scores, body weight loss, brain edema, Evans blue extravasation, Western blot analysis, histopathological study, and biochemical estimation.. It was observed that an ATX intracerebroventricular injection 30 minutes post-SAH could significantly attenuate EBI (including brain edema, blood-brain barrier disruption, neural cell apoptosis, and neurological dysfunction) after SAH in rats. Meanwhile, delayed treatment with ATX 3 hours post-SAH by oral administration was also neuroprotective in both rats and rabbits. In addition, the authors found that ATX treatment could prevent oxidative damage and upregulate the endogenous antioxidant levels in the rat cerebral cortex following SAH.. These results suggest that ATX administration could alleviate EBI after SAH, potentially through its powerful antioxidant property. The authors conclude that ATX might be a promising therapeutic agent for EBI following SAH. Topics: Animals; Blood-Brain Barrier; Brain; Disease Models, Animal; Fibrinolytic Agents; Male; Neuroprotective Agents; Oxidative Stress; Rabbits; Rats; Rats, Sprague-Dawley; Subarachnoid Hemorrhage; Xanthophylls | 2014 |
Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage.
Neuroinflammation has been proven to play a crucial role in early brain injury pathogenesis and represents a target for treatment of subarachnoid hemorrhage (SAH). Astaxanthin (ATX), a dietary carotenoid, has been shown to have powerful anti-inflammation property in various models of tissue injury. However, the potential effects of ATX on neuroinflammation in SAH remain uninvestigated. The goal of this study was to investigate the protective effects of ATX on neuroinflammation in a rat prechiasmatic cistern SAH model.. Rats were randomly distributed into multiple groups undergoing the sham surgery or SAH procedures, and ATX (25 mg/kg or 75 mg/kg) or equal volume of vehicle was given by oral gavage at 30 min after SAH. All rats were sacrificed at 24 h after SAH. Neurologic scores, brain water content, blood-brain barrier permeability, and neuronal cell death were examined. Brain inflammation was evaluated by means of expression changes in myeloperoxidase, cytokines (interleukin-1β, tumor necrosis factor-α), adhesion molecules (intercellular adhesion molecule-1), and nuclear factor kappa B DNA-binding activity.. Our data indicated that post-SAH treatment with high dose of ATX could significantly downregulate the increased nuclear factor kappa B activity and the expression of inflammatory cytokines and intercellular adhesion molecule-1 in both messenger RNA transcription and protein synthesis. Moreover, these beneficial effects lead to the amelioration of the secondary brain injury cascades including cerebral edema, blood-brain barrier disruption, neurological dysfunction, and neuronal degeneration.. These results indicate that ATX treatment is neuroprotective against SAH, possibly through suppression of cerebral inflammation. Topics: Animals; Blood-Brain Barrier; Brain Edema; Cell Death; Disease Models, Animal; Interleukin-1beta; Male; Neuritis; Neuroprotective Agents; NF-kappa B; Optic Chiasm; Rats, Sprague-Dawley; Subarachnoid Hemorrhage; Tumor Necrosis Factor-alpha; Xanthophylls | 2014 |
Astaxanthin alleviates early brain injury following subarachnoid hemorrhage in rats: possible involvement of Akt/bad signaling.
Apoptosis has been proven to play a crucial role in early brain injury pathogenesis and to represent a target for the treatment of subarachnoid hemorrhage (SAH). Previously, we demonstrated that astaxanthin (ATX) administration markedly reduced neuronal apoptosis in the early period after SAH. However, the underlying molecular mechanisms remain obscure. In the present study, we tried to investigate whether ATX administration is associated with the phosphatidylinositol 3-kinase-Akt (PI3K/Akt) pathway, which can play an important role in the signaling of apoptosis. Our results showed that post-SAH treatment with ATX could cause a significant increase of phosphorylated Akt and Bad levels, along with a significant decrease of cleaved caspase-3 levels in the cortex after SAH. In addition to the reduced neuronal apoptosis, treatment with ATX could also significantly reduce secondary brain injury characterized by neurological dysfunction, cerebral edema and blood-brain barrier disruption. In contrast, the PI3K/Akt inhibitor, LY294002, could partially reverse the neuroprotection of ATX in the early period after SAH by downregulating ATX-induced activation of Akt/Bad and upregulating cleaved caspase-3 levels. These results provided the evidence that ATX could attenuate apoptosis in a rat SAH model, potentially, in part, through modulating the Akt/Bad pathway. Topics: Animals; Apoptosis; bcl-Associated Death Protein; Blood-Brain Barrier; Brain Injuries; Caspase 3; Cerebral Cortex; Disease Models, Animal; Down-Regulation; Male; Neurons; Neuroprotective Agents; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Signal Transduction; Subarachnoid Hemorrhage; Up-Regulation; Xanthophylls | 2014 |
Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury.
Astaxanthin (ATX) has been proven to ameliorate early brain injury (EBI) after experimental subarachnoid hemorrhage (SAH) by modulating cerebral oxidative stress. This study was performed to assess the effect of ATX on the Nrf2-ARE pathway and to explore the underlying molecular mechanisms of antioxidant properties of ATX in EBI after SAH. A total of 96 male SD rats were randomly divided into four groups. Autologous blood was injected into the prechiasmatic cistern of the rat to induce an experimental SAH model. Rats in each group were sacrificed at 24 h after SAH. Expressions of Nrf2 and heme oxygenase-1 (HO-1) were measured by Western blot and immunohistochemistry analysis. The mRNA levels of HO-1, NAD (P) H: quinone oxidoreductase 1 (NQO-1), and glutathione S-transferase-α1 (GST-α1) were determined by real-time polymerase chain reaction (PCR). It was observed that administration of ATX post-SAH could up-regulate the cortical expression of these agents, mediated in the Nrf2-ARE pathway at both pretranscriptional and posttranscriptional levels. Meanwhile, oxidative damage was reduced. Furthermore, ATX treatment significantly attenuated brain edema, blood-brain barrier (BBB) disruption, cellular apoptosis, and neurological dysfunction in SAH models. This study demonstrated that ATX treatment alleviated EBI in SAH model, possibly through activating the Nrf2-ARE pathway by inducing antioxidant and detoxifying enzymes. Topics: Animals; Antioxidant Response Elements; Antioxidants; Apoptosis; Blood-Brain Barrier; Brain; Brain Injuries; Disease Models, Animal; Glutathione Transferase; Heme Oxygenase-1; Isoenzymes; Male; NAD(P)H Dehydrogenase (Quinone); NF-E2-Related Factor 2; Oxidative Stress; Rats; Rats, Sprague-Dawley; Signal Transduction; Subarachnoid Hemorrhage; Xanthophylls | 2014 |