astaxanthine has been researched along with Seizures* in 2 studies
2 other study(ies) available for astaxanthine and Seizures
Article | Year |
---|---|
Neuroprotective effect of astaxanthin on newborn rats exposed to prenatal maternal seizures.
Maternal epilepsy during pregnancy is associated with an increased incidence of brain damage and cognitive deficits in offspring. Oxidative stress is believed to play a critical role in this process. Astaxanthin, a natural carotenoid and dietary supplement, possesses potent antioxidant properties. This study was designed to investigate whether astaxanthin ameliorates the hippocampal damage in newborn rats induced by maternal epileptic seizures in utero and to explore the underlying mechanisms. Female Sprague-Dawley rats underwent chronic amygdalar kindling. After being fully kindled, all rats were allowed to mate, and electrical stimulation in the amygdala was performed every other day throughout the pregnancy. Astaxanthin was intraperitoneally injected at a dose of 30 mg/kg/d throughout pregnancy. Prenatal astaxanthin administration ameliorated neuronal lesions, decreased oxidative stress and induced the expression of cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in the hippocampus of pups. Astaxanthin also ameliorated placental ischemic damage in epileptic mothers. Based on the results of the present study, we concluded that astaxanthin might serve as a therapeutic agent for preventing brain damage in offspring exposed to prenatal maternal seizures. Topics: Amygdala; Animals; Animals, Newborn; Antioxidants; Cognition Disorders; Epilepsy; Female; Hippocampus; Kindling, Neurologic; Male; Maternal Exposure; Neurons; Neuroprotective Agents; Oxidative Stress; Pregnancy; Prenatal Exposure Delayed Effects; Rats; Rats, Sprague-Dawley; Seizures; Temporal Lobe; Xanthophylls | 2019 |
Astaxanthin protects against kainic acid-induced seizures and pathological consequences.
Excitotoxic damage caused by increased glutamate levels is involved in the pathogenesis of neurodegenerative diseases. Astaxanthin, a natural carotenoid with multiple health benefits, inhibits glutamate release from the brain tissue; however, whether it possesses the ability to affect glutamate-induced brain injury is unknown. The present study investigated the neuroprotective effects of astaxanthin on kainic acid (KA)-induced excitotoxicity in rats and the possible underlying intracellular signaling pathway. The rats were orally administrated with astaxanthin (50 or 100 mg/kg) for 7 days (once a day), and KA (15 mg/kg) was administered intraperitoneally at 1 h after the final administration. The results revealed that KA induced seizures, increased the hippocampal glutamate levels, caused considerable neuronal death and microglial activation in the hippocampal CA3 regions, and increased the production of proinflammatory cytokines. Astaxanthin pretreatment prevented these changes. Furthermore, astaxanthin pretreatment increased the expression of neuronal cell survival-related factors, including phosphorylated Akt, phosphorylated glycogen synthase kinase-3β, and Bcl-2 in the hippocampus of KA-injected rats. These results suggested that astaxanthin can attenuate seizures, mitigate inflammation, augment survival signals, and prevent hippocampal neuronal damage in the animal model of KA-induced excitotoxicity. Topics: Animals; Cell Death; Disease Models, Animal; Excitatory Amino Acid Agonists; Glutamic Acid; Hippocampus; Kainic Acid; Neurons; Neuroprotective Agents; Rats, Sprague-Dawley; Seizures; Xanthophylls | 2018 |