astaxanthine has been researched along with Non-alcoholic-Fatty-Liver-Disease* in 24 studies
8 review(s) available for astaxanthine and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
Effects of astaxanthin in animal models of obesity-associated diseases: A systematic review and meta-analysis.
Obesity is a major risk factor for several diseases, including metabolic syndrome (MetS), non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D). The use of natural products, such as astaxanthin (ASX), a potent antioxidant compound produced by the freshwater green microalga Haematococcus pluvialis, has gained particular interest to reduce oxidative stress and inflammation, and to improve redox status, often associated with obesity. A systematic review and meta-analysis was performed to comprehensively examine the effects of ASX in animal models of diet induced obesity-associated diseases in order to inform the design of future human clinical studies for ASX use as supplement or nutraceutical.. Cinahl, Cochraine, MEDLINE, Scopus and Web of Science were searched for English-language manuscripts published between January 2000 and April 2020 using the following key words: astaxanthin, obesity, non-alcoholic fatty liver disease, diabetes mellitus type 2, NAFLD and metabolic.. Seventeen eligible articles, corresponding to 21 animal studies, were included in the final quantitative analysis. ASX, at different concentrations and administered for different length of time, induced a significant reduction in adipose tissue weight (P = 0.05) and systolic blood pressure (P < 0.0001) in control animals. In animal models of T2D, ASX significantly reduced serum glucose levels (P = 0.04); whereas it improved several disease biomarkers in the blood (e.g. cholesterol, triglycerides, ALT and AST, P < 0.10), and reduced liver (P = 0.0002) and body weight (P = 0.11), in animal models of NAFLD.. Supplementation of ASX in the diet has positive effects on symptoms associated with obesity related diseases in animals, by having lipid-lowering, hypo-insulin and hypoglycaemic capacity, protecting organs from oxidative stress and mitigating the immune system, as suggested in this review. Topics: Animals; Diabetes Mellitus, Type 2; Humans; Models, Animal; Non-alcoholic Fatty Liver Disease; Obesity; Xanthophylls | 2021 |
Carotenoids and fatty liver disease: Current knowledge and research gaps.
Carotenoids form an important part of the human diet, consumption of which has been associated with many health benefits. With the growing global burden of liver disease, increasing attention has been paid on the possible beneficial role that carotenoids may play in the liver. This review focuses on carotenoid actions in non-alcoholic fatty liver disease (NAFLD), and alcoholic liver disease (ALD). Indeed, many human studies have suggested an association between decreased circulating levels of carotenoids and increased incidence of NAFLD and ALD. The literature describing supplementation of individual carotenoids in rodent models of NAFLD and ALD is reviewed, with particular attention paid to β-carotene and lycopene, but also including β-cryptoxanthin, lutein, zeaxanthin, and astaxanthin. The effect of beta-carotene oxygenase 1 and 2 knock-out mice on hepatic lipid metabolism is also discussed. In general, there is evidence to suggest that carotenoids have beneficial effects in animal models of both NAFLD and ALD. Mechanistically, these benefits may occur via three possible modes of action: 1) improved hepatic antioxidative status broadly attributed to carotenoids in general, 2) the generation of vitamin A from β-carotene and β-cryptoxanthin, leading to improved hepatic retinoid signaling, and 3) the generation of apocarotenoid metabolites from β-carotene and lycopene, that may regulate hepatic signaling pathways. Gaps in our knowledge regarding carotenoid mechanisms of action in the liver are highlighted throughout, and the review ends by emphasizing the importance of dose effects, mode of delivery, and mechanism of action as important areas for further study. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro. Topics: Animals; beta-Carotene 15,15'-Monooxygenase; Beta-Cryptoxanthin; Carotenoids; Humans; Liver Diseases, Alcoholic; Lutein; Mice; Mice, Knockout; Non-alcoholic Fatty Liver Disease; Vitamin A; Xanthophylls; Zeaxanthins | 2020 |
Food components with antifibrotic activity and implications in prevention of liver disease.
Increasing prevalence of nonalcoholic fatty liver disease (NAFLD) in parallel with the obesity epidemic has been a major public health concern. NAFLD is the most common chronic liver disease in the United States, ranging from fatty liver to steatohepatitis, fibrosis and cirrhosis in the liver. In response to chronic liver injury, fibrogenesis in the liver occurs as a protective response; however, prolonged and dysregulated fibrogenesis can lead to liver fibrosis, which can further progress to cirrhosis and eventually hepatocellular carcinoma. Interplay of hepatocytes, macrophages and hepatic stellate cells (HSCs) in the hepatic inflammatory and oxidative milieu is critical for the development of NAFLD. In particular, HSCs play a major role in the production of extracellular matrix proteins. Studies have demonstrated that bioactive food components and natural products, including astaxanthin, curcumin, blueberry, silymarin, coffee, vitamin C, vitamin E, vitamin D, resveratrol, quercetin and epigallocatechin-3-gallate, have antifibrotic effects in the liver. This review summarizes current knowledge of the mechanistic insight into the antifibrotic actions of the aforementioned bioactive food components. Topics: Blueberry Plants; Coffee; Curcumin; Food; Hepatic Stellate Cells; Hepatocytes; Humans; Liver Cirrhosis; Macrophages; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Resveratrol; Vitamins; Xanthophylls | 2018 |
Nutraceutical Approach to Non-Alcoholic Fatty Liver Disease (NAFLD): The Available Clinical Evidence.
Non-alcoholic fatty liver disease (NAFLD) is a clinical condition characterized by lipid infiltration of the liver, highly prevalent in the general population affecting 25% of adults, with a doubled prevalence in diabetic and obese patients. Almost 1/3 of NAFLD evolves in Non-Alcoholic SteatoHepatitis (NASH), and this can lead to fibrosis and cirrhosis of the liver. However, the main causes of mortality of patients with NAFLD are cardiovascular diseases. At present, there are no specific drugs approved on the market for the treatment of NAFLD, and the treatment is essentially based on optimization of lifestyle. However, some nutraceuticals could contribute to the improvement of lipid infiltration of the liver and of the related anthropometric, haemodynamic, and/or biochemical parameters. The aim of this paper is to review the available clinical data on the effect of nutraceuticals on NAFLD and NAFLD-related parameters. Relatively few nutraceutical molecules have been adequately studied for their effects on NAFLD. Among these, we have analysed in detail the effects of silymarin, vitamin E, vitamin D, polyunsaturated fatty acids of the omega-3 series, astaxanthin, coenzyme Q10, berberine, curcumin, resveratrol, extracts of Topics: Antioxidants; Berberine; Curcumin; Dietary Supplements; Fatty Acids, Omega-3; Fatty Acids, Unsaturated; Humans; Meta-Analysis as Topic; Non-alcoholic Fatty Liver Disease; Obesity; Observational Studies as Topic; Plant Extracts; Probiotics; Randomized Controlled Trials as Topic; Resveratrol; Salvia miltiorrhiza; Silymarin; Ubiquinone; Vitamin D; Vitamin E; Xanthophylls | 2018 |
Nonalcoholic Fatty Liver Disease and Insulin Resistance: New Insights and Potential New Treatments.
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver disorders worldwide. It is associated with clinical states such as obesity, insulin resistance, and type 2 diabetes, and covers a wide range of liver changes, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma. Metabolic disorders, such as lipid accumulation, insulin resistance, and inflammation, have been implicated in the pathogenesis of NAFLD, but the underlying mechanisms, including those that drive disease progression, are not fully understood. Both innate and recruited immune cells mediate the development of insulin resistance and NASH. Therefore, modifying the polarization of resident and recruited macrophage/Kupffer cells is expected to lead to new therapeutic strategies in NAFLD. Oxidative stress is also pivotal for the progression of NASH, which has generated interest in carotenoids as potent micronutrient antioxidants in the treatment of NAFLD. In addition to their antioxidative function, carotenoids regulate macrophage/Kupffer cell polarization and thereby prevent NASH progression. In this review, we summarize the molecular mechanisms involved in the pathogenesis of NAFLD, including macrophage/Kupffer cell polarization, and disturbed hepatic function in NAFLD. We also discuss dietary antioxidants, such as β-cryptoxanthin and astaxanthin, that may be effective in the prevention or treatment of NAFLD. Topics: Antioxidants; Carotenoids; Cryptoxanthins; Humans; Insulin Resistance; Liver; Macrophages; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Xanthophylls | 2017 |
Antioxidant dietary approach in treatment of fatty liver: New insights and updates.
Non-alcoholic fatty liver disease (NAFLD) is a common clinicopathological condition, encompassing a range of conditions caused by lipid deposition within liver cells. To date, no approved drugs are available for the treatment of NAFLD, despite the fact that it represents a serious and growing clinical problem in the Western world. Identification of the molecular mechanisms leading to NAFLD-related fat accumulation, mitochondrial dysfunction and oxidative balance impairment facilitates the development of specific interventions aimed at preventing the progression of hepatic steatosis. In this review, we focus our attention on the role of dysfunctions in mitochondrial bioenergetics in the pathogenesis of fatty liver. Major data from the literature about the mitochondrial targeting of some antioxidant molecules as a potential treatment for hepatic steatosis are described and critically analysed. There is ample evidence of the positive effects of several classes of antioxidants, such as polyphenols ( Topics: Animals; Anthocyanins; Antioxidants; Carotenoids; Catechin; Coumestrol; Curcumin; Energy Metabolism; Fatty Liver; Glucosinolates; Humans; Imidoesters; Isothiocyanates; Lipogenesis; Mitochondria; Non-alcoholic Fatty Liver Disease; Nutritional Sciences; Oxidative Stress; Oximes; Polyphenols; Quercetin; Resveratrol; Stilbenes; Sulfoxides; Xanthophylls | 2017 |
Novel Action of Carotenoids on Non-Alcoholic Fatty Liver Disease: Macrophage Polarization and Liver Homeostasis.
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. It is characterized by a wide spectrum of hepatic changes, which may progress to non-alcoholic steatohepatitis (NASH) and cirrhosis. NAFLD is considered a hepatic manifestation of metabolic syndrome; however, mechanisms underlying the onset and progression of NAFLD are still unclear. Resident and recruited macrophages are key players in the homeostatic function of the liver and in the progression of NAFLD to NASH. Progress has been made in understanding the molecular mechanisms underlying the polarized activation of macrophages. New NAFLD therapies will likely involve modification of macrophage polarization by restraining M1 activation or driving M2 activation. Carotenoids are potent antioxidants and anti-inflammatory micronutrients that have been used to prevent and treat NAFLD. In addition to their antioxidative action, carotenoids can regulate macrophage polarization and thereby halt the progression of NASH. In this review, we summarize the molecular mechanisms of macrophage polarization and the function of liver macrophages/Kupffer cells in NAFLD. From our review, we propose that dietary carotenoids, such as β-cryptoxanthin and astaxanthin, be used to prevent or treat NAFLD through the regulation of macrophage polarization and liver homeostasis. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Beta-Cryptoxanthin; Carotenoids; Cell Polarity; Disease Models, Animal; Disease Progression; Homeostasis; Humans; Kupffer Cells; Liver; Macrophage Activation; Metabolic Syndrome; Micronutrients; Non-alcoholic Fatty Liver Disease; Randomized Controlled Trials as Topic; Xanthophylls | 2016 |
Micronutrient Antioxidants and Nonalcoholic Fatty Liver Disease.
Nonalcoholic fatty liver disease (NAFLD) is one of the most important chronic liver diseases worldwide and has garnered increasing attention in recent decades. NAFLD is characterized by a wide range of liver changes, from simple steatosis to nonalcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. The blurred pathogenesis of NAFLD is very complicated and involves lipid accumulation, insulin resistance, inflammation, and fibrogenesis. NAFLD is closely associated with complications such as obesity, diabetes, steatohepatitis, and liver fibrosis. During the progression of NAFLD, reactive oxygen species (ROS) are activated and induce oxidative stress. Recent attempts at establishing effective NAFLD therapy have identified potential micronutrient antioxidants that may reduce the accumulation of ROS and finally ameliorate the disease. In this review, we present the molecular mechanisms involved in the pathogenesis of NAFLD and introduce some dietary antioxidants that may be used to prevent or cure NAFLD, such as vitamin D, E, and astaxanthin. Topics: Animals; Antioxidants; Humans; Non-alcoholic Fatty Liver Disease; Vitamin D; Vitamin E; Xanthophylls | 2016 |
16 other study(ies) available for astaxanthine and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
Astaxanthin Attenuates Nonalcoholic Steatohepatitis with Downregulation of Osteoprotegerin in Ovariectomized Mice Fed Choline-Deficient High-Fat Diet.
Postmenopausal estrogen decline increases the risk of developing nonalcoholic steatohepatitis (NASH), and it might accelerate progression to cirrhosis and hepatocellular carcinoma.. This study aimed to investigate a novel therapy for postmenopausal women who are diagnosed with NASH.. Seven-week-old female C57BL/6 J mice were divided into three experimental groups as follows: (1) sham operation (SHAM group), (2) ovariectomy (OVX group), and (3) ovariectomy + 0.02% astaxanthin (OVX + ASTX group). These three groups of mice were fed a choline-deficient high-fat (CDHF) diet for 8 weeks. Blood serum and liver tissues were collected to examine liver injury, histological changes, and hepatic genes associated with NASH. An in vitro study was performed with the hepatic stellate cell line LX-2.. The administration of ASTX significantly improved pathological NASH with suppressed steatosis, inflammation, and fibrosis, in comparison with those in the OVX-induced estrogen deficiency group. As a result, liver injury was also attenuated with reduced levels of alanine aminotransferase and aspartate transaminase. In addition, our study found that ASTX supplementation decreased hepatic osteoprotegerin (OPG) in vivo, a possible factor that contributes to NASH development. In vitro, this study further confirmed that ASTX has an inhibitory effect on the secretion of OPG in LX-2 human hepatic stellate cells.. Our findings suggest that ASTX alleviates CDHF-OVX-induced pathohistological NASH with downregulated OPG, possibly via suppression of the transforming growth factor beta pathway. ASTX could has promise for use in postmenopausal women diagnosed with NASH. Topics: Animals; Choline; Diet; Diet, High-Fat; Down-Regulation; Estrogens; Female; Fibrosis; Humans; Liver; Liver Cirrhosis; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Osteoprotegerin | 2023 |
Hepatic parenchymal cell and mitochondrial-targeted astaxanthin nanocarriers for relief of high fat diet-induced nonalcoholic fatty liver disease.
Nonalcoholic fatty liver disease (NAFLD) is a metabolic syndrome disorder. Here, hepatic parenchymal cell and mitochondrial-targeted nanocarriers were constructed to deliver astaxanthin (AST) to liver tissue to maximize AST intervention efficiency. The hepatic parenchymal cell-targeting was achieved using galactose (Gal) conjugated onto whey protein isolate (WPI) through the Maillard reaction by recognizing asialoglycoprotein receptors specifically expressed in hepatocytes. Grafting triphenylphosphonium (TPP) onto glycosylated WPI by an amidation reaction enabled the nanocarriers (AST@TPP-WPI-Gal) to achieve dual targeting capability. The AST@TPP-WPI-Gal nanocarriers could target mitochondria in steatotic HepG2 cells with an enhanced anti-oxidative and anti-adipogenesis effect. The ability of AST@TPP-WPI-Gal to target liver tissue was verified by an NAFLD mice model, and the results showed that AST@TPP-WPI-Gal could regulate blood lipid disorders, protect liver function, and remarkably reduce liver lipid accumulation (40%) compared with that of free AST. Therefore, AST@TPP-WPI-Gal might have potential as a dual targeting hepatic agent for nutritional intervention for NAFLD. Topics: Animals; Diet, High-Fat; Hepatocytes; Liver; Mice; Mice, Inbred C57BL; Mitochondria; Non-alcoholic Fatty Liver Disease | 2023 |
Astaxanthin attenuates hepatic steatosis in high-fat diet-fed rats by suppressing microRNA-21 via transactivation of nuclear factor erythroid 2-related factor 2.
This study examined whether astaxanthin (ASX) could alleviate hepatic steatosis in rats fed a high-fat diet (HFD) by modulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/miR-21 axis. Rats (n = 8/group) were fed either a standard diet (3.8 kcal/g; 10% fat) or HFD (4.6 kcal/g; 40% fat) and treated orally with either the vehicle or ASX (6 mg/kg) daily for 8 days. Another group was fed HFD and treated with ASX and brusatol (an Nrf2 inhibitor) (2 mg/kg/twice per week/i.p.). ASX prevented the gain in body and liver weights and attenuated hepatic lipid accumulation in HFD-fed rats. In the control and HFD-fed rats, ASX did not affect food intake, serum free fatty acid (FFA) content, and glucose and insulin levels and tolerance. However, serum triglyceride (TG), cholesterol, and low-density lipoprotein-cholesterol levels; hepatic levels of TGs and FFAs; and hepatic levels of Srebp1, Srebp2, HMGCR, and fatty acid synthase mRNAs and miR-21 were reduced and the mRNA levels of Pparα were significantly increased in both the groups. These effects were associated with a reduction in the hepatic levels of reactive oxygen species, malondialdehyde, tumor necrosis factor-α, and interlukin-6 as well as an increase in superoxide dismutase levels, total glutathione content, and nuclear levels and activity of Nrf2. miR-21 levels were strongly correlated with the nuclear activity of Nrf2. Brusatol completely reversed the effects of ASX. In conclusion, ASX prevents hepatic steatosis mainly by transactivating Nrf2 and is associated with the suppression of miR-21 and Srebp1/2 and upregulation of Pparα expression. Topics: Animals; Diet, High-Fat; Liver; MicroRNAs; NF-E2-Related Factor 2; Non-alcoholic Fatty Liver Disease; Rats; Transcriptional Activation; Xanthophylls | 2022 |
Astaxanthin Alleviates Nonalcoholic Fatty Liver Disease by Regulating the Intestinal Flora and Targeting the AMPK/Nrf2 Signal Axis.
Nonalcoholic fatty liver disease (NAFLD) is among the most prevalent chronic liver diseases around the globe. The accumulation of lipids in the liver and oxidative stress are important pathological mechanisms of NAFLD. Astaxanthin (AT) is a carotenoid extracted from shrimps and crabs with beneficial biological activities, including anti-oxidative and anti-inflammatory activities. 16S microflora sequencing, H&E staining, and the western blot technique were employed to investigate the impacts of AT on a high-fat diet (HFD)-induced NAFLD. Significant mitigation in lipid metabolism-related disorders and decreased oxidative stress in HFD-induced mice were observed due to AT, and significant changes in the gut flora of the model mice were also observed. The Topics: Acetyl-CoA Carboxylase; AMP-Activated Protein Kinases; Animals; Gastrointestinal Microbiome; Hep G2 Cells; Humans; Lipid Metabolism; Liver; Mice; Mice, Inbred C57BL; NF-E2-Related Factor 2; Non-alcoholic Fatty Liver Disease; Sterol Regulatory Element Binding Protein 1; Xanthophylls | 2022 |
Astaxanthin Prevents Diet-Induced NASH Progression by Shaping Intrahepatic Immunity.
Dietary change leads to a precipitous increase in non-alcoholic fatty liver disease (NAFLD) from simple steatosis to the advanced form of non-alcoholic steatohepatitis (NASH), affecting approximately 25% of the global population. Although significant efforts greatly advance progress in clarifying the pathogenesis of NAFLD and identifying therapeutic targets, no therapeutic agent has been approved. Astaxanthin (ASTN), a natural antioxidant product, exerts an anti-inflammation and anti-fibrotic effect in mice induced with carbon tetrachloride (CCl Topics: Animals; Chemokine CCL2; Cytokines; Diet, High-Fat; Disease Models, Animal; Fibroblast Growth Factor 2; Hepatic Stellate Cells; Lipopolysaccharides; Liver; Liver Cirrhosis; Macrophages; Male; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Oxidative Stress; RAW 264.7 Cells; Xanthophylls | 2021 |
Prevention of NAFLD/NASH by Astaxanthin and β-Cryptoxanthin.
Metabolic disorders, such as lipid accumulation, insulin resistance, and inflammation, have been implicated in the pathogenesis of NAFLD/NASH. Both innate and recruited immune cells mediate the development of insulin resistance and NASH. Oxidative stress is also pivotal for the progression of NASH. Astaxanthin is a natural carotenoid mainly derived from microorganisms and marine organisms. Due to its special chemical structure, astaxanthin has strong antioxidant activity. β-Cryptoxanthin is a xanthophyll carotenoid specifically found in the Satsuma mandarin. β-Cryptoxanthin is readily absorbed and relatively abundant in human plasma, together with α-carotene, β-carotene, lycopene, lutein, and zeaxanthin. Considering the unique chemical properties of astaxanthin and β-cryptoxanthin and the complex pathogenic mechanism of NASH, astaxanthin and β-cryptoxanthin are regarded as a considerable compound for the prevention and treatment of NASH. This chapter comprehensively describes the mechanism of the application for astaxanthin and β-cryptoxanthin on the prevention and treatment of NASH from the aspects, including antioxidative stress, inhibition of inflammation and promotion of M2 macrophage polarization, improvement of mitochondrial oxidative respiration, amelioration of insulin resistance, and suppression of fibrosis. Topics: Antioxidants; Beta-Cryptoxanthin; Humans; Non-alcoholic Fatty Liver Disease; Xanthophylls | 2021 |
Astaxanthin attenuates hepatic damage and mitochondrial dysfunction in non-alcoholic fatty liver disease by up-regulating the FGF21/PGC-1α pathway.
Non-alcoholic fatty liver disease (NAFLD) is considered to be one of the most common chronic liver diseases across worldwide. Astaxanthin (Ax) is a carotenoid, and beneficial effects of astaxanthin, including anti-oxidative, anti-inflammatory, and anti-tumour activity, have been identified. The present study aimed to elucidate the protective effect of astaxanthin against NAFLD and its underlying mechanism.. Mice were fed either a high fat or chow diet, with or without astaxanthin, for up to 12 weeks. L02 cells were treated with free fatty acids combined with different doses of astaxanthin for 48 h. Histopathology, expression of lipid metabolism, inflammation, apoptosis, and fibrosis-related gene expression were assessed. And the function of mitochondria was also evaluated.. The results indicated that astaxanthin attenuated HFD- and FFA-induced lipid accumulation and its associated oxidative stress, cell apoptosis, inflammation, and fibrosis both in vivo and in vitro. Astaxanthin up-regulated FGF21 and PGC-1α expression in damaged hepatocytes, which suggested an unrecognized mechanism of astaxanthin on ameliorating NAFLD.. Astaxanthin attenuated hepatocyte damage and mitochondrial dysfunction in NAFLD by up-regulating FGF21/PGC-1α pathway. Our results suggest that astaxanthin may become a promising drug to treat or relieve NAFLD. Topics: Animals; Diet, High-Fat; Fibroblast Growth Factors; Hepatocytes; Lipid Metabolism; Liver; Mice; Mice, Inbred C57BL; Mitochondria; Non-alcoholic Fatty Liver Disease; Xanthophylls | 2020 |
A Combination of Flaxseed Oil and Astaxanthin Improves Hepatic Lipid Accumulation and Reduces Oxidative Stress in High Fat-Diet Fed Rats.
Hepatic lipid accumulation and oxidative stress are crucial pathophysiological mechanisms for non-alcoholic fatty liver disease (NAFLD). Thus, we examined the effect of a combination of flaxseed oil (FO) and astaxanthin (ASX) on hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet. ASX was dissolved in flaxseed oil (1 g/kg; FO + ASX). Animals were fed diets containing 20% fat, where the source was lard, or 75% lard and 25% FO + ASX, or 50% lard and 50% FO + ASX, or FO + ASX, for 10 weeks. Substitution of lard with FO + ASX reduced steatosis and reduced hepatic triacylglycerol and cholesterol. The combination of FO and ASX significantly decreased hepatic sterol regulatory element-binding transcription factor 1 and 3-hydroxy-3-methylglutaryl-CoA reductase but increased peroxisome proliferator activated receptor expression. FO + ASX significantly suppressed fatty acid synthase and acetyl CoA carboxylase but induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. FO + ASX also significantly elevated hepatic SOD, CAT and GPx activity and GSH, and markedly reduced hepatic lipid peroxidation. Thus, FO and ASX may reduce NAFLD by reversing hepatic steatosis and reducing lipid accumulation and oxidative stress. Topics: Acetyl-CoA Carboxylase; Animals; Cholesterol; Diet, High-Fat; Dietary Fats; Fatty Acid Synthases; Linseed Oil; Lipid Peroxidation; Liver; Male; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Oxidoreductases; PPAR gamma; Rats; Rats, Sprague-Dawley; Sterol Regulatory Element Binding Protein 1; Triglycerides; Xanthophylls | 2017 |
Letter to the Editor: Bioinformatics Analysis in Mice with Diet-Induced Nonalcoholic Steatohepatitis Treated with Astaxanthin and Vitamin E.
n/a. Topics: Animals; Computational Biology; Diet; Disease Models, Animal; Liver; Mice; Non-alcoholic Fatty Liver Disease; Transcriptome; Vitamin E; Xanthophylls | 2017 |
Reply to the Letter to the Editor by Li et al.: Bioinformatics Analysis in Mice with Diet-Induced Nonalcoholic Steatohepatitis Treated with Astaxanthin and Vitamin E.
n/a. Topics: Animals; Computational Biology; Diet; Insulin Resistance; Mice; Non-alcoholic Fatty Liver Disease; Vitamin E; Xanthophylls | 2017 |
Astaxanthin prevents ischemia-reperfusion injury of the steatotic liver in mice.
Steatosis has a low tolerance against ischemia-reperfusion injury (IRI). To prevent IRI in the steatotic liver, we attempted to elucidate the protective effect of astaxanthin (ASTX) in the steatotic liver model by giving mice a methionine and choline-deficient high fat (MCDHF) diet. Levels of lipid peroxidation and apoptosis, the expression of inflammatory cytokines and heme oxygenase (HO)-1, in the liver were assessed. Reactive oxygen species (ROS), inflammatory cytokines, apoptosis-related proteins and members of the signaling pathway were also examined in isolated Kupffer cells and/or hepatocytes from the steatotic liver. ASTX decreased serum ALT and AST levels, the amount of TUNEL, F4/80, or 4HNE-positive cells and the mRNA levels of inflammatory cytokines in MCDHF mice by IRI. Moreover, HO-1 and HIF-1α, phosphorylation of Akt and mTOR expressions were increased by ASTX. The inflammatory cytokines produced by Kupffer, which were subjected to hypoxia and reoxygenation (HR), were inhibited by ASTX. Expressions of Bcl-2, HO-1 and Nrf2 in hepatocytes by HR were increased, whereas Caspases activation, Bax and phosphorylation of ERK, MAPK, and JNK were suppressed by ASTX. Pretreatment with ASTX has a protective effect and is a safe therapeutic treatment for IRI, including for liver transplantation of the steatotic liver. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Cell Hypoxia; Cytoprotection; Gene Expression Regulation, Enzymologic; Heme Oxygenase-1; Hepatocytes; Hypoxia-Inducible Factor 1, alpha Subunit; Kupffer Cells; Liver; Male; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Oxygen; Phosphorylation; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Reperfusion Injury; Signal Transduction; TOR Serine-Threonine Kinases; Xanthophylls | 2017 |
Astaxanthin inhibits inflammation and fibrosis in the liver and adipose tissue of mouse models of diet-induced obesity and nonalcoholic steatohepatitis.
The objective of this study was to determine if astaxanthin (ASTX), a xanthophyll carotenoid, can prevent obesity-associated metabolic abnormalities, inflammation and fibrosis in diet-induced obesity (DIO) and nonalcoholic steatohepatitis (NASH) mouse models. Male C57BL/6J mice were fed a low-fat (6% fat, w/w), a high-fat/high-sucrose control (HF/HS; 35% fat, 35% sucrose, w/w), or a HF/HS containing ASTX (AHF/HS; 0.03% ASTX, w/w) for 30 weeks. To induce NASH, another set of mice was fed a HF/HS diet containing 2% cholesterol (HF/HS/HC) a HF/HS/HC with 0.015% ASTX (AHF/HS/HC) for 18 weeks. Compared to LF, HF/HS significantly increased plasma total cholesterol, triglyceride and glucose, which were lowered by ASTX. ASTX decreased hepatic mRNA levels of markers of macrophages and fibrosis in both models. The effect of ASTX was more prominent in NASH than DIO mice. In epididymal fat, ASTX also decreased macrophage infiltration and M1 macrophage marker expression, and inhibited hypoxia-inducible factor 1-α and its downstream fibrogenic genes in both mouse models. ASTX significantly decreased tumor necrosis factor α mRNA in the splenocytes from DIO mice upon lipopolysaccharides stimulation compared with those from control mice fed an HF/HS diet. Additionally, ASTX significantly elevated the levels of genes that regulate fatty acid β-oxidation and mitochondrial biogenesis in the skeletal muscle compared with control obese mice, whereas no differences were noted in adipose lipogenic genes. Our results indicate that ASTX inhibits inflammation and fibrosis in the liver and adipose tissue and enhances the skeletal muscle's capacity for mitochondrial fatty acid oxidation in obese mice. Topics: Adipose Tissue; Animals; Blood Glucose; Body Weight; Dietary Supplements; Disease Models, Animal; Fibrosis; Gene Expression Regulation; Lipids; Liver; Male; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease; Obesity; Panniculitis; Xanthophylls | 2017 |
Hepatic Transcriptome Profiles of Mice with Diet-Induced Nonalcoholic Steatohepatitis Treated with Astaxanthin and Vitamin E.
Astaxanthin alleviates hepatic lipid accumulation and peroxidation, inflammation, and fibrosis in mice with high-cholesterol, high-cholate, and high-fat (CL) diet-induced nonalcoholic steatohepatitis (NASH) [...]. Topics: Animals; Diet, High-Fat; Disease Models, Animal; Eukaryotic Initiation Factor-2; Gene Expression Profiling; Liver; Male; Mice; Mitochondria; Non-alcoholic Fatty Liver Disease; PPAR alpha; PPAR delta; Protein Interaction Mapping; Protein Interaction Maps; Retinoic Acid Receptor alpha; Signal Transduction; Transcriptome; Vitamin E; Xanthophylls | 2017 |
Astaxanthin Improves Nonalcoholic Fatty Liver Disease in Werner Syndrome with Diabetes Mellitus.
Topics: Diabetes Complications; Female; Humans; Middle Aged; Non-alcoholic Fatty Liver Disease; Werner Syndrome; Xanthophylls | 2015 |
Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E.
Hepatic insulin resistance and nonalcoholic steatohepatitis (NASH) could be caused by excessive hepatic lipid accumulation and peroxidation. Vitamin E has become a standard treatment for NASH. However, astaxanthin, an antioxidant carotenoid, inhibits lipid peroxidation more potently than vitamin E. Here, we compared the effects of astaxanthin and vitamin E in NASH. We first demonstrated that astaxanthin ameliorated hepatic steatosis in both genetically (ob/ob) and high-fat-diet-induced obese mice. In a lipotoxic model of NASH: mice fed a high-cholesterol and high-fat diet, astaxanthin alleviated excessive hepatic lipid accumulation and peroxidation, increased the proportion of M1-type macrophages/Kupffer cells, and activated stellate cells to improve hepatic inflammation and fibrosis. Moreover, astaxanthin caused an M2-dominant shift in macrophages/Kupffer cells and a subsequent reduction in CD4(+) and CD8(+) T cell recruitment in the liver, which contributed to improved insulin resistance and hepatic inflammation. Importantly, astaxanthin reversed insulin resistance, as well as hepatic inflammation and fibrosis, in pre-existing NASH. Overall, astaxanthin was more effective at both preventing and treating NASH compared with vitamin E in mice. Furthermore, astaxanthin improved hepatic steatosis and tended to ameliorate the progression of NASH in biopsy-proven human subjects. These results suggest that astaxanthin might be a novel and promising treatment for NASH. Topics: Animals; Antioxidants; CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes; Diet, High-Fat; Disease Models, Animal; Female; Glucose Metabolism Disorders; Humans; Insulin Resistance; Kupffer Cells; Lipid Peroxidation; Liver; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Non-alcoholic Fatty Liver Disease; Sterol Regulatory Element Binding Protein 1; Vitamin E; Xanthophylls | 2015 |
Astaxanthin lowers plasma TAG concentrations and increases hepatic antioxidant gene expression in diet-induced obesity mice.
Non-alcoholic fatty liver disease (NAFLD) is significantly associated with hyperlipidaemia and oxidative stress. We have previously reported that astaxanthin (ASTX), a xanthophyll carotenoid, lowers plasma total cholesterol and TAG concentrations in apoE knockout mice. To investigate whether ASTX supplementation can prevent the development of NAFLD in obesity, male C57BL/6J mice (n 8 per group) were fed a high-fat diet (35%, w/w) supplemented with 0, 0.003, 0.01 or 0.03% of ASTX (w/w) for 12 weeks. The 0.03% ASTX-supplemented group, but not the other groups, exhibited a significant decrease in plasma TAG concentrations, suggesting that ASTX at a 0.03% supplementation dosage exerts a hypotriacylglycerolaemic effect. Although there was an increase in the mRNA expression of fatty acid synthase and diglyceride acyltransferase 2, the mRNA levels of acyl-CoA oxidase 1, a critical enzyme in peroxisomal fatty acid β-oxidation, exhibited an increase in the 0.03% ASTX-supplemented group. There was a decrease in plasma alanine transaminase (ALT) and aspartate transaminase (AST) concentrations in the 0.03% ASTX-supplemented group. There was a significant increase in the hepatic mRNA expression of nuclear factor erythroid 2-related factor 2 and its downstream genes, which are critical for endogenous antioxidant mechanism, in the 0.03% ASTX-supplemented group. Furthermore, there was a significant decrease in the mRNA abundance of IL-6 in the primary splenocytes isolated from the 0.03% ASTX-supplemented group upon lipopolysaccharide (LPS) stimulation when compared with that in the splenocytes isolated from the control group. In conclusion, ASTX supplementation lowered the plasma concentrations of TAG, ALT and AST, increased the hepatic expression of endogenous antioxidant genes, and rendered splenocytes less sensitive to LPS stimulation. Therefore, ASTX may prevent obesity-associated metabolic disturbances and inflammation. Topics: Adipose Tissue; Alanine Transaminase; Animals; Antioxidants; Aspartate Aminotransferases; Diet, High-Fat; Dietary Supplements; Gene Expression; Lipid Metabolism; Lipogenesis; Liver; Male; Mice; Mice, Inbred C57BL; NF-E2-Related Factor 2; Non-alcoholic Fatty Liver Disease; Obesity; RNA, Messenger; Spleen; Triglycerides; Xanthophylls | 2014 |