astaxanthine has been researched along with Diabetes-Mellitus--Type-2* in 11 studies
4 review(s) available for astaxanthine and Diabetes-Mellitus--Type-2
Article | Year |
---|---|
Astaxanthin supplementation mildly reduced oxidative stress and inflammation biomarkers: a systematic review and meta-analysis of randomized controlled trials.
Previous in vitro and animal studies showed that astaxanthin improved oxidative stress and inflammation biomarkers. We hypothesized the same effects of astaxanthin in humans and conducted a systematic review and meta-analysis of previous randomized controlled trials to test this hypothesis. The literature search was performed on PubMed, Cochrane Library, and Scopus databases from January 1970 to April 2021. Main eligibility criteria include: intervention using astaxanthin for at least 1 week; inclusion of placebo control; and measuring at least 1 of the common oxidative stress and inflammation biomarkers before and after intervention. Twelve randomized controlled trials including 380 participants were included. Compared with placebo, astaxanthin significantly reduced blood malondialdehyde concentration (standardized mean difference [SMD]: -0.95; 95% CI, -1.67 to -0.23; P = .01). The lowering effect of astaxanthin supplementation on malondialdehyde was particularly significant in type 2 diabetes mellitus (T2DM) patients (SMD: -0.64; 95% CI, -1.26 to -0.01; P < .05). A limited number of trials were available for the effects of astaxanthin on other oxidative stress biomarkers. Astaxanthin supplementation appeared to improve superoxide dismutase activity and reduce serum isoprostane concentration in overweight subjects. Astaxanthin significantly reduced blood interleukin-6 concentration in T2DM patients (weighted mean difference: -0.70 pg/mL; 95% CI, -1.29 to -0.11 pg/mL; P = .02). The effects of astaxanthin on blood C-reactive protein and tumor necrosis factor-α concentrations were not significant. The current work indicated that astaxanthin supplementation may be beneficial for improving oxidative stress and certain inflammation biomarkers, particularly in T2DM patients. Future work should investigate the effects of astaxanthin on T2DM. Topics: Animals; Biomarkers; Diabetes Mellitus, Type 2; Dietary Supplements; Humans; Inflammation; Oxidative Stress; Randomized Controlled Trials as Topic; Xanthophylls | 2022 |
Effects of astaxanthin in animal models of obesity-associated diseases: A systematic review and meta-analysis.
Obesity is a major risk factor for several diseases, including metabolic syndrome (MetS), non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D). The use of natural products, such as astaxanthin (ASX), a potent antioxidant compound produced by the freshwater green microalga Haematococcus pluvialis, has gained particular interest to reduce oxidative stress and inflammation, and to improve redox status, often associated with obesity. A systematic review and meta-analysis was performed to comprehensively examine the effects of ASX in animal models of diet induced obesity-associated diseases in order to inform the design of future human clinical studies for ASX use as supplement or nutraceutical.. Cinahl, Cochraine, MEDLINE, Scopus and Web of Science were searched for English-language manuscripts published between January 2000 and April 2020 using the following key words: astaxanthin, obesity, non-alcoholic fatty liver disease, diabetes mellitus type 2, NAFLD and metabolic.. Seventeen eligible articles, corresponding to 21 animal studies, were included in the final quantitative analysis. ASX, at different concentrations and administered for different length of time, induced a significant reduction in adipose tissue weight (P = 0.05) and systolic blood pressure (P < 0.0001) in control animals. In animal models of T2D, ASX significantly reduced serum glucose levels (P = 0.04); whereas it improved several disease biomarkers in the blood (e.g. cholesterol, triglycerides, ALT and AST, P < 0.10), and reduced liver (P = 0.0002) and body weight (P = 0.11), in animal models of NAFLD.. Supplementation of ASX in the diet has positive effects on symptoms associated with obesity related diseases in animals, by having lipid-lowering, hypo-insulin and hypoglycaemic capacity, protecting organs from oxidative stress and mitigating the immune system, as suggested in this review. Topics: Animals; Diabetes Mellitus, Type 2; Humans; Models, Animal; Non-alcoholic Fatty Liver Disease; Obesity; Xanthophylls | 2021 |
Impact of Astaxanthin on Diabetes Pathogenesis and Chronic Complications.
Oxidative stress (OS) plays a pivotal role in diabetes mellitus (DM) onset, progression, and chronic complications. Hyperglycemia-induced reactive oxygen species (ROS) have been shown to reduce insulin secretion from pancreatic β-cells, to impair insulin sensitivity and signaling in insulin-responsive tissues, and to alter endothelial cells function in both type 1 and type 2 DM. As a powerful antioxidant without side effects, astaxanthin (ASX), a xanthophyll carotenoid, has been suggested to contribute to the prevention and treatment of DM-associated pathologies. ASX reduces inflammation, OS, and apoptosis by regulating different OS pathways though the exact mechanism remains elusive. Based on several studies conducted on type 1 and type 2 DM animal models, orally or parenterally administrated ASX improves insulin resistance and insulin secretion; reduces hyperglycemia; and exerts protective effects against retinopathy, nephropathy, and neuropathy. However, more experimental support is needed to define conditions for its use. Moreover, its efficacy in diabetic patients is poorly explored. In the present review, we aimed to identify the up-to-date biological effects and underlying mechanisms of ASX on the ROS-induced DM-associated metabolic disorders and subsequent complications. The development of an in-depth research to better understand the biological mechanisms involved and to identify the most effective ASX dosage and route of administration is deemed necessary. Topics: Antioxidants; Diabetes Mellitus, Type 2; Humans; Oxidative Stress; Xanthophylls | 2020 |
The effects of astaxanthin supplementation on obesity, blood pressure, CRP, glycemic biomarkers, and lipid profile: A meta-analysis of randomized controlled trials.
Previous studies lack consistent conclusions as to whether astaxanthin is actually linked to various health benefits as claimed. Here, we attempt to unravel the association of astaxanthin consumption with selected health benefits by performing a systematic review and meta-analysis.. Online literature search databases including Scopus, Web of Science, PubMed/Medline, Embase and Google Scholar were searched to discover relevant articles available up to 17 March 2020. We used mean changes and SD of the outcomes to assess treatment response from baseline and mean difference, and 95 % CI were calculated to combined data and assessment effect sizes in astaxanthin and control groups.. 14 eligible articles were included in the final quantitative analysis. Current study revealed that astaxanthin consumption was not associated with FBS, HbA1c, TC, LDL-C, TG, BMI, BW, DBP, and SBP. We did observe an overall increase in HDL-C (WMD: 1.473 mg/dl, 95 % CI: 0.319-2.627, p = 0.012). As for the levels of CRP, only when astaxanthin was administered (i) for relatively long periods (≥ 12 weeks) (WMD: -0.528 mg/l, 95 % CI: -0.990 to -0.066), and (ii) at high dose (> 12 mg/day) (WMD: -0.389 mg/dl, 95 % CI: -0.596 to -0.183), the levels of CRP would decrease.. In summary, our systematic review and meta-analysis revealed that astaxanthin consumption was associated with increase in HDL-C and decrease in CRP. Significant associations were not observed for other outcomes. Topics: Adolescent; Adult; Aged; Biomarkers; Blood Glucose; Blood Pressure; Body Mass Index; C-Reactive Protein; Diabetes Mellitus, Type 2; Dietary Supplements; Dyslipidemias; Female; Glycated Hemoglobin; Humans; Lipids; Male; Middle Aged; Obesity; Randomized Controlled Trials as Topic; Time Factors; Treatment Outcome; Xanthophylls; Young Adult | 2020 |
1 trial(s) available for astaxanthine and Diabetes-Mellitus--Type-2
Article | Year |
---|---|
The antioxidant and anti-inflammatory effects of astaxanthin supplementation on the expression of miR-146a and miR-126 in patients with type 2 diabetes mellitus: A randomised, double-blind, placebo-controlled clinical trial.
The pathogenesis of type 2 diabetes mellitus (T2DM) is associated with chronic oxidative stress and inflammation. It is well known that the expression of some miRNAs such as miRNA-146a is upregulated in diabetic and hyperglycaemic patients, whereas circulating miRNA-126 is reduced. Therefore, we aimed to determine the effects of astaxanthin (AST) supplementation on the circulating malondialdehyde (MDA) and interleukin 6 (IL-6) levels, and the expression of miR-146a and miR-126 in patients with T2DM.. This randomised, double-blind, placebo-controlled clinical trial was conducted in 44 patients with T2DM randomly receiving 8 mg/d of oral AST (n = 22) or placebo (n = 22) for 8 weeks.. We observed that AST supplementation could decrease plasma levels of MDA and IL-6 (P < .05) and decrease the expression level of miR-146a over time (fold change: -1/388) (P < .05).. AST supplementation might be beneficial for improving circulating MDA and IL-6 and the down-regulation of miR-146a. However, future investigations are suggested to confirm these results. Topics: Anti-Inflammatory Agents; Antioxidants; Diabetes Mellitus, Type 2; Dietary Supplements; Humans; MicroRNAs; Xanthophylls | 2021 |
6 other study(ies) available for astaxanthine and Diabetes-Mellitus--Type-2
Article | Year |
---|---|
Astaxanthin: A Marine Drug That Ameliorates Cerebrovascular-Damage-Associated Alzheimer's Disease in a Zebrafish Model via the Inhibition of Matrix Metalloprotease-13.
Alzheimer's disease (AD) is a major type of dementia disorder. Common cognitive changes occur as a result of cerebrovascular damage (CVD) via the disruption of matrix metalloproteinase-13 (MMP-13). In diabetic cases, the progress of vascular dementia is faster and the AD rate is higher. Patients with type 2 diabetes are known to have a higher risk of the factor for AD progression. Hence, this study is designed to investigate the role of astaxanthin (AST) in CVD-associated AD in zebrafish via the inhibition of MMP-13 activity. CVD was developed through the intraperitoneal and intracerebral injection of streptozotocin (STZ). The AST (10 and 20 mg/L), donepezil (1 mg/L), and MMP-13 inhibitor (i.e., CL-82198; 10 μM) were exposed for 21 consecutive days in CVD animals. The cognitive changes in zebrafish were evaluated through light and dark chamber tests, a color recognition test, and a T-maze test. The biomarkers of AD pathology were assessed via the estimation of the cerebral extravasation of Evans blue, tissue nitrite, amyloid beta-peptide aggregation, MMP-13 activity, and acetylcholinesterase activity. The results revealed that exposure to AST leads to ameliorative behavioral and biochemical changes. Hence, AST can be used for the management of AD due to its multi-targeted actions, including MMP-13 inhibition. Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Matrix Metalloproteinase 13; Zebrafish | 2023 |
Astaxanthin reduces type 2 diabetic‑associated cognitive decline in rats via activation of PI3K/Akt and attenuation of oxidative stress.
Astaxanthin (AST) is an oxygenated derivative of carotenoid, which possesses a strong antioxidant activity. AST can effectively remove active oxygen from the body, and is thus considered to have an important role in disease prevention and treatment. The present study aimed to determine the effects of AST on type 2 diabetic‑associated cognitive decline (DACD) in rats. Rats were intraperitoneally injected with streptozotocin (STZ), in order to establish a model of diabetes mellitus (DM). A total of 40 rats were randomly divided into five groups: The control group, the DM group, the AST (50 mg/kg) group, the AST (100 mg/kg) group, and the AST+LY294002 group (AST, 50 mg/kg and LY, 0.25 µg/100 g). Following a 14‑day treatment with AST, the body weight, blood glucose levels and cognitive function were determined. In addition, the protein expression levels of phosphatidylinositol 3‑kinase (PI3K)/Akt, glutathione peroxidase and superoxide dismutase activity, glutathione and malondialdehyde content, and inducible nitric oxide synthase (iNOS), caspase‑3 and caspase‑9 activity were detected in the rats with DM. AST clearly augmented body weight and reduced blood glucose levels in rats with DM. Furthermore, treatment with AST significantly improved the cognitive function of rats with DM. Treatment with AST activated the PI3K/Akt pathway, and suppressed oxidative stress in the DM rats. In the cerebral cortex and hippocampus of the rats with DM, the activities of iNOS, caspase‑3 and caspase‑9 were markedly reduced. Furthermore, treatment with the Akt inhibitor LY294002 reduced the effectiveness of AST on DACD in rats. In conclusion, AST may reduce type 2 DACD in rats via activation of PI3K/Akt and attenuation of oxidative stress. Topics: Animals; Caspase 3; Caspase 9; Cerebral Cortex; Cognition Disorders; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Gene Expression Regulation; Hippocampus; Humans; Malondialdehyde; Oxidative Stress; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Xanthophylls | 2016 |
Ameliorative effect of astaxanthin on endothelial dysfunction in streptozotocin-induced diabetes in male rats.
The present study was designed to examine whether astaxanthin (ASX, 3,3-dihydroxybeta, beta-carotene-4,4-dione, CAS 472-61-7), a dietary antioxidant carotenoid that is naturally present in algae, crustaceans, and fish, has a protective effect on endothelial dysfunction of aortas in diabetic rats and the possible molecular mechanism involved. Male Wistar rats were randomly divided into four groups: control rats, diabetic rats, diabetic rats treated with ASX (10 mg/kg/d), and control rats treated with ASX. Type 1 diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ; 60 mg/ kg). STZ-induced diabetes in rats was complicated with excessive oxidative stress and endothelial dysfunction, increased serum oxidized low-density lipoprotein (ox-LDL) and aortic malondialdehyde (MDA) levels, inhibited endothelium-dependent vasorelaxation to acetylcholine (ACh) and unaffected endothelium-dependent vasorelaxation to sodium nitroprusside (SNP). Simultaneously, lectin-like oxLDL receptor-i (LOX-1) expression was enhanced and endothelial nitric oxide (NO) synthase (eNOS) expression was reduced in the aortas of diabetic rats. ASX treatment could significantly decrease serum oxLDL and aortic MDA levels, attenuate blunted endothelium-dependent vasodilator responses to ACh, upregulate eNOS expression, and decrease LOX-1 expression. These results indicated that ASX could ameliorate diabetic endothelial dysfunction by inhibiting the ox-LDLLOX-1-eNOS pathway. Treatment with ASX might be clinically useful for diabetic complications associated with endothelial dysfunction. Topics: Animals; Biomarkers; Blotting, Western; Body Weight; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Endothelium; Fibrinolytic Agents; Fluorescent Antibody Technique; Isometric Contraction; Lipid Peroxidation; Lipids; Male; Malondialdehyde; Muscle, Smooth, Vascular; Oxidative Stress; Rats; Rats, Wistar; Reverse Transcriptase Polymerase Chain Reaction; Vasodilation; Xanthophylls | 2011 |
Microarray profiling of gene expression patterns in glomerular cells of astaxanthin-treated diabetic mice: a nutrigenomic approach.
We have demonstrated that astaxanthin reduces glomerular oxidative stress as well as inhibits the increase in urinary albumin in diabetic db/db mice. The aim of the present study was to determine the gene expression patterns in the glomerular cells of the diabetic mouse kidney, and to investigate the effects of astaxanthin on the expression of these genes using a high-density DNA microarray. The diet administered to the astaxanthin-supplementation group was prepared by mixing a control powder with astaxanthin at a concentration of 0.02%. Glomerular cells were obtained from the kidneys of mice by laser capture microdissection. Preparation of cRNA and target hybridization were performed according to the Affymetrix GeneChip eukaryotic small sample target labeling assay protocol. The gene expression profile was evaluated by the mouse expression set 430A GeneChip. Array data analysis was carried out using Affymetrix GeneChip operating and Ingenuity Pathway analysis software. Comparison between diabetic db/db and non-diabetic db/m mice revealed that 779 probes (3.1%) were significantly affected, i.e. 550 probes were up-regulated, and 229 probes were down-regulated, both at levels of >/=1.5-fold in the diabetic mice. Ingenuity signal analysis of 550 up-regulated probes revealed the mitochondrial oxidative phosphorylation pathway as the most significantly affected caronical pathway. The affected genes were associated with complexes I, III, and IV located on the mitochondrial inner membrane, and the expression levels of these genes were decreased in mice treated with astaxanthin as compared to the levels in the control mice. In addition, the expression of many genes associated with oxidative stress, collagen synthesis, and transforming growth factor-beta signaling was enhanced in the diabetic mice, and this enhancement was slightly inhibited in the astaxanthin-treated mice. In conclusion, this genome-wide nutrigenomics approach provided insight into genes and putative genetic pathways that are thought to be affected by stimulation by high-glucose concentrations. In addition, the present approach may help us gain a better understanding of the genes and pathways involved in the anti-diabetic mechanism of astaxanthin. Topics: Animals; Diabetes Mellitus, Type 2; Female; Gene Expression; Gene Expression Profiling; Kidney Glomerulus; Mesangial Cells; Mice; Mice, Obese; Oligonucleotide Array Sequence Analysis; RNA, Messenger; Xanthophylls | 2006 |
Prevention of diabetic nephropathy by treatment with astaxanthin in diabetic db/db mice.
Oxidative stress is implicated as an important mechanism by which diabetes causes nephropathy. Astaxanthin, which is found as a common pigment in algae, fish, and birds, is a carotenoid with significant potential for antioxidative activity. In this study, we examined whether chronic administration of astaxanthin could prevent the progression of diabetic nephropathy induced by oxidative stress in mice. We used female db/db mice, a rodent model of type 2 diabetes, and their non-diabetic db/m littermates. The mice were divided into three groups as follows: non-diabetic db/m, diabetic db/db, and diabetic db/db treated with astaxanthin. Blood glucose level, body weight, urinary albumin, and urinary 8-hydroxydeoxyguanosine (8-OHdG) were measured during the experiments. Histological and 8-OHdG immunohistochemical studies were performed for 12 weeks from the beginning of treatment. After 12 weeks of treatment, the astaxanthin-treated group showed a lower level of blood glucose compared with the non-treated db/db group; however, both groups had a significantly high level compared with the db/m mice. The relative mesangial area calculated by the mesangial area/total glomerular area ratio was significantly ameliorated in the astaxanthin-treated group compared with the non-treated db/db group. The increases in urinary albumin and 8-OHdG at 12 weeks of treatment were significantly inhibited by chronic treatment with astaxanthin. The 8-OHdG immunoreactive cells in glomeruli of non-treated db/db mice were more numerous than in the astaxanthin-treated db/db mice. In this study, treatment with astaxanthin ameliorated the progression and acceleration of diabetic nephropathy in the rodent model of type 2 diabetes. The results suggested that the antioxidative activity of astaxanthin reduced the oxidative stress on the kidneys and prevented renal cell damage. In conclusion, administration of astaxanthin might be a novel approach for the prevention of diabetes nephropathy. Topics: 8-Hydroxy-2'-Deoxyguanosine; Albuminuria; Animals; beta Carotene; Deoxyguanosine; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Disease Models, Animal; Female; Kidney; Mice; Mice, Mutant Strains; Reference Values; Regression Analysis; Tissue Distribution; Xanthophylls | 2004 |
Astaxanthin protects beta-cells against glucose toxicity in diabetic db/db mice.
Oxidative stress induced by hyperglycemia possibly causes the dysfunction of pancreatic beta-cells and various forms of tissue damage in patients with diabetes mellitus. Astaxanthin, a carotenoid of marine microalgae, is reported as a strong anti-oxidant inhibiting lipid peroxidation and scavenging reactive oxygen species. The aim of the present study was to examine whether astaxanthin can elicit beneficial effects on the progressive destruction of pancreatic beta-cells in db/db mice--a well-known obese model of type 2 diabetes. We used diabetic C57BL/KsJ-db/db mice and db/m for the control. Astaxanthin treatment was started at 6 weeks of age and its effects were evaluated at 10, 14, and 18 weeks of age by non-fasting blood glucose levels, intraperitoneal glucose tolerance test including insulin secretion, and beta-cell histology. The non-fasting blood glucose level in db/db mice was significantly higher than that of db/m mice, and the higher level of blood glucose in db/db mice was significantly decreased after treatment with astaxanthin. The ability of islet cells to secrete insulin, as determined by the intraperitoneal glucose tolerance test, was preserved in the astaxanthin-treated group. Histology of the pancreas revealed no significant differences in the beta-cell mass between astaxanthin-treated and -untreated db/db mice. In conclusion, these results indicate that astaxanthin can exert beneficial effects in diabetes, with preservation of beta-cell function. This finding suggests that anti-oxidants may be potentially useful for reducing glucose toxicity. Topics: Adjuvants, Immunologic; Age Factors; Animals; Antioxidants; beta Carotene; Blood Glucose; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucose; Islets of Langerhans; Mice; Mice, Inbred C57BL; Oxidative Stress; Reactive Oxygen Species; Time Factors; Xanthophylls | 2002 |