astatine has been researched along with Medulloblastoma* in 2 studies
2 other study(ies) available for astatine and Medulloblastoma
Article | Year |
---|---|
Radioiodine and 211At-labeled guanidinomethyl halobenzoyl octreotate conjugates: potential peptide radiotherapeutics for somatostatin receptor-positive cancers.
Derivatives of the somatostatin analogues octreotide and octreotate labeled with radioiosotopes are used in the diagnosis and therapy of somatostatin receptor (SSTR)-positive tumors. A method has been devised to synthesize {N-(4-guanidinomethyl-3-iodobenzoyl)-Phe1-octreotate (GMIBO). Receptor binding assay and scatchard analysis yielded a Kd of 4.83 +/- 0.19 nM for this peptide. Derivatives of this peptide labeled with radioiodine ([*I]GMIBO) and the alpha-particle-emitting radiohalogen 211At N-(3-[211At]astato-4-guanidinomethylbenzoyl)-Phe1-octreotate; [211At]AGMBO} were prepared in a single step from a tin precursor in radiochemical yields of 30-35% and 15-20%, respectively. Paired-label internalization assays performed with the SSTR-positive D341 Med human medulloblastoma cell line demonstrated that [125I]GMIBO and [211At]AGMBO were specifically internalized 20-40% more than Nalpha-(1-deoxy-D-fructosyl)-[131I]I-Tyr3-octreotate ([131I]I-Glu-TOCA), the radioiodinated octreotide derivative previously shown to exhibit maximum internalization in this cell line. Uptake of [131I]GMIBO in D341 Med subcutaneous xenografts in a murine model (8.34 +/- 1.82 versus 8.10 +/- 2.23% ID/g at 1h) and SSTR-expressing normal tissues was comparable to that of [125I]I-Glu-TOCA and was shown to be specific. However, the uptake of [131I]GMIBO also was substantially higher in liver (16.9 +/- 3.15 versus 1.39 +/- 0.45% ID/g at 1 h) and in kidneys (44.33 +/- 6.47 versus 3.44 +/- 0.68% ID/g at 1h) compared to that of [125I]I-Glu-TOCA. These data suggest that these novel peptide conjugates retain their specificity for SSTR both in vitro and in vivo; however, because of their higher accumulation in normal tissues they would be best applied in settings amenable to loco-regional administration such as medulloblastoma neoplastic meningitis. Topics: Animals; Astatine; Cell Line, Tumor; Humans; Iodine Radioisotopes; Medulloblastoma; Mice; Mice, Nude; Neoplasm Transplantation; Pancreatic Neoplasms; Peptides, Cyclic; Rats; Receptors, Somatostatin; Tissue Distribution; Transplantation, Heterologous | 2004 |
Meta-[131I]iodobenzylguanidine uptake and meta-[211At]astatobenzylguanidine treatment in human medulloblastoma cell lines.
Uptake of radioiodinated meta-iodobenzylguanidine (MIBG) has been demonstrated in the neural crest tumors, including neuroblastoma, pheochromocytoma, and carcinoid tumors, and is presently in use diagnostically and therapeutically in these settings. Cells comprising medulloblastoma, the most common central nervous system malignancy in childhood, may be derived from a common germinal neuroepithelial cell as neural crest tissue, and as a result, also may have the capacity for accumulating MIBG. To investigate this hypothesis, we measured the in vitro binding of [131I]MIBG to 9 medulloblastoma-derived cell lines and the SK-N-SH neuroblastoma line known to accumulate MIBG. Seven of the medulloblastoma lines exhibited MIBG binding. The cell line with the greatest uptake, D384 Med, bound 11.2 +/- 0.9% of added [131I]MIBG activity compared with 47.1 +/- 2.3% for the SK-N-SH cell line. When 2 of the cell lines, D384 Med and D458 Med, were treated with the alpha-particle emitting analogue meta-[211At]astatobenzylguanidine ([211At]MABG), as much as a 3-log cell kill was observed in limiting dilution clonogenic assays. Exposure to considerably higher activity levels of [211At]astatide was required to achieve a similar degree of cell kill, suggesting that this cytotoxicity was not related to nonspecific effects of alpha-particle irradiation. We conclude that the uptake capacity of medulloblastoma cell lines for [131I]MIBG uptake in vitro, while lower than that seen in SK-N-SH neuroblastoma cells, is sufficient to permit [211At]MABG to be used with significant therapeutic effectiveness. Topics: 3-Iodobenzylguanidine; Antineoplastic Agents; Astatine; Biological Transport; Cell Line; Cell Survival; Cerebellar Neoplasms; Guanidines; Humans; Iodine Radioisotopes; Iodobenzenes; Kinetics; Medulloblastoma; Neuroblastoma; Tumor Cells, Cultured | 1995 |