ascorbic-acid and Vascular-Calcification

ascorbic-acid has been researched along with Vascular-Calcification* in 3 studies

Other Studies

3 other study(ies) available for ascorbic-acid and Vascular-Calcification

ArticleYear
Association between dietary vitamin C and abdominal aortic calcification among the US adults.
    Nutrition journal, 2023, Nov-15, Volume: 22, Issue:1

    Cardiovascular disease (CVD) is the leading cause of mortality, and vascular calcification has been highly correlated with CVD events. Abdominal aortic calcification (AAC) has been shown to predict subclinical CVD and incident CVD events. However, the relationship between vitamin C and abdominal aortic calcification remains unclear.. To investigate the relationship of dietary vitamin C with AAC among the adult population in the US.. The National Health and Nutrition Examination Survey (NHANES) 2013-2014 provided the data for the cross-sectional study. 2297 subjects (1089 males) were included in the study. Two scoring systems, AAC 24-point scale (Kauppila) and AAC 8-point scale (Schousboe), were used for the measurement of AAC score. Dietary vitamin C intake was calculated as the average of two rounds of 24-h interview recall data and classified in tertiles for analysis. We applied weighted multiple regression analyses to assess the relationship of dietary vitamin C with AAC score and the risk of having AAC. To ensure the robustness of the findings, subgroup and sensitivity analyses were performed. Additionally, smooth curve fittings, using generalized additive models (GAM) were employed to visualize potential nonlinear relationships. Furthermore, an exploratory analysis on the relationship of vitamin C supplements with AAC was also conducted.. The results showed that higher dietary vitamin C intake was related to a reduction in AAC score (AAC-24: β = -0.338, 95% confidence interval [CI] -0.565, -0.111, P = 0.004; AAC-8: β = -0.132, 95%CI -0.217, -0.047, P = 0.002), and lower risk of AAC (odds ratio [OR] = 0.807, 95%CI 0.659, 0.989, P = 0.038). However, the relationship of vitamin C supplements with AAC was not identified.. The study revealed that higher intake of dietary vitamin C rather than vitamin C supplements was related to reduced AAC score and lower risk of AAC, indicating that diets rich in vitamin C are recommended due to its potential benefits for protecting against vascular calcification and CVD among the adult population in the US.

    Topics: Adult; Aorta, Abdominal; Aortic Diseases; Ascorbic Acid; Cardiovascular Diseases; Cross-Sectional Studies; Diet; Humans; Male; Nutrition Surveys; Risk Factors; Vascular Calcification; Vitamins

2023
Hydrolysis of Extracellular ATP by Vascular Smooth Muscle Cells Transdifferentiated into Chondrocytes Generates P
    International journal of molecular sciences, 2021, Mar-14, Volume: 22, Issue:6

    (1) Background: Tissue non-specific alkaline phosphatase (TNAP) is suspected to induce atherosclerosis plaque calcification. TNAP, during physiological mineralization, hydrolyzes the mineralization inhibitor inorganic pyrophosphate (PP

    Topics: Adenosine Triphosphate; Alkaline Phosphatase; Animals; Aorta; Ascorbic Acid; Atherosclerosis; Cell Transdifferentiation; Chondrocytes; Diphosphates; Glycerophosphates; Humans; Magnetic Resonance Spectroscopy; Mice; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Phosphates; Vascular Calcification

2021
Combined effects of ascorbic acid and phosphate on rat VSMC osteoblastic differentiation.
    Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 2012, Volume: 27, Issue:1

    Ascorbic acid (AA) supplementation has been suggested to afford erythropoietin hyporesponsiveness and high levels of ferritin in haemodialysis (HD) patients. However, little is known about the possible side effects of this policy on vascular calcification (VC). VC, induced by a high-phosphate and uraemic milieu, is characterized by a passive deposition of calcium-phosphate (Ca-P) and an active transformation of vascular smooth muscle cells (VSMCs) in osteoblastic-like cells. The aim of these studies was to characterize the combined effects of AA and P on VC.. Rat VSMCs were challenged with inorganic P (Pi) and AA, and Ca deposition analysis was performed to quantify VC. To investigate VSMC osteoblastic differentiation, we analysed α-actin protein content and core-binding factor alpha-1 (Cbfα1/RUNX2) messenger RNA (mRNA) expression.. When incubated with 5 mM Pi, VSMCs showed a significant increase in Ca deposition compared to control cells. Interestingly, the addition of AA in the calcification medium resulted in a dose-dependent increase in Pi-induced Ca deposition. At the same time, the combined effect of AA and Pi on VSMCs resulted in the reduction of α-actin protein content and in a 4-fold increase of Cbfα1/RUNX2 mRNA expression.. We demonstrated that AA combined with Pi increases Ca deposition in rat VSMCs. The role of AA as cofactor in osteoblastic differentiation was demonstrated by phenotypic changes in VSMCs and enhanced bone mineralization key gene expression. These in vitro preliminary data suggest a potential role for AA combined with Pi in worsening VC.

    Topics: Actins; Animals; Antioxidants; Ascorbic Acid; Blotting, Western; Cell Differentiation; Cells, Cultured; Core Binding Factor Alpha 1 Subunit; Male; Muscle, Smooth, Vascular; Osteoblasts; Phosphates; Rats; Real-Time Polymerase Chain Reaction; RNA, Messenger; Vascular Calcification

2012