ascorbic-acid has been researched along with Leishmaniasis* in 2 studies
1 review(s) available for ascorbic-acid and Leishmaniasis
Article | Year |
---|---|
Ascorbate peroxidase acts as a novel determiner of redox homeostasis in Leishmania.
Reactive oxygen species (ROS) are produced as natural byproducts of metabolism and respiration. While physiological levels of ROS are required for vital cellular functions (e.g., development and proliferation), a living organism is faced with constant challenges due to accumulation or overproduction of ROS throughout its life. The life cycle of Leishmania parasite has led it to confront the highly oxidizing environment in the macrophage phagosomes, necessitating ROS homeostasis and signaling as key strategies for successful survival and pathogenicity.. Ascorbate peroxidase from Leishmania major (LmAPX) is the only heme peroxidase identified so far in Leishmania. Structural analysis and functional characterization of LmAPX have yielded interesting and novel insight on this enzyme. The protein has been found to be a hybrid of cytochrome c peroxidase and ascorbate peroxidase. This enzyme is colocalized with cytochrome c in the inner mitochondrial membrane facing the intermembrane space and shows higher activity toward cytochrome c oxidation.. Overexpression of LmAPX in L. major cells confers tolerance to oxidative stress-mediated cardiolipin oxidation and consequently protects cells from extensive protein damage. LmAPX-/- mutants show higher intracellular hydrogen peroxide (H₂O₂), which might signal for cellular transformation from noninfective procyclic to infective metacyclic form and ultimately apoptosis.. Manipulation of LmAPX expression has significantly added to the present understanding of the parasite's defense network against oxidative damage caused by H₂O₂. The future investigations will address more exactly the signaling pathways involved in redox homeostasis. Topics: Animals; Antioxidants; Ascorbate Peroxidases; Ascorbic Acid; Catalytic Domain; Homeostasis; Humans; Leishmania; Leishmaniasis; Models, Molecular; Oxidation-Reduction; Oxidative Stress; Protozoan Proteins | 2013 |
1 other study(ies) available for ascorbic-acid and Leishmaniasis
Article | Year |
---|---|
Ascorbic acid reduces the genetic damage caused by miltefosine (hexadecylphosphocholine) in animals infected by Leishmania (Leishamnia) infantum without decreasing its antileishmanial activity.
Leishamaniasis is a neglected disease caused by over 20 Leishmania species, occurring in more than a hundred countries. Miltefosine (hexadecylphosphocholine) is the single oral drug used in treatment for leshmaniases, including cases of infections resistant to pentavalent antimony. Our group has recently demonstrated the ability of miltefosine to cause genomic lesions by DNA oxidation. Acknowledging that antioxidant compounds can potentially modulate Reactive Oxygen Species (ROS), our study verified whether ascorbic acid reduces the genotoxic and mutagenic effects caused by miltefosine, and whether it interferes with drug efficacy. For this purpose, uninfected Swiss mice received simultaneous (single dose treatment) miltefosine and ascorbic acid (gavage and intraperitoneally), besides pre and post treatments (ascorbic acid 24 h before and after drug administration); furthermore, Balb/c mice infected with Leishmania infantum received miltefosine plus ascorbic acid (repeated doses treatment). We conducted comet assays, micronucleus tests, dosages of superoxide dismutase enzyme and parasitic burden by the limiting dilution assay. We observed that ascorbic acid administered intraperitoneally displayed a protective effect over damage caused by miltefosine. However, this effect was not not observed when the same doses were administered via gavage, possibly due to low serum levels of this antioxidant. Ascorbic acid's protective effect reinforces that miltefosine damages DNA by oxidizing its nitrogenous bases, which is reduced by ascorbic acid due to its ability of protecting genetic material from the action of ROS. Therefore, our results show that this drug is efficient in reducing parasitic burden of L. infantum. Topics: Animals; Antiprotozoal Agents; Ascorbic Acid; DNA Damage; Injections, Intraperitoneal; Leishmania infantum; Leishmaniasis; Male; Mice; Mice, Inbred BALB C; Parasite Load; Phosphorylcholine; Reactive Oxygen Species; Superoxide Dismutase | 2019 |