ascorbic-acid and Heart-Arrest

ascorbic-acid has been researched along with Heart-Arrest* in 11 studies

Other Studies

11 other study(ies) available for ascorbic-acid and Heart-Arrest

ArticleYear
Vitamin C Improves the Outcomes of Cardiopulmonary Resuscitation and Alters Shedding of Syndecan-1 and p38/MAPK Phosphorylation in a Rat Model.
    Journal of the American Heart Association, 2022, 04-05, Volume: 11, Issue:7

    Topics: Animals; Ascorbic Acid; Cardiopulmonary Resuscitation; Disease Models, Animal; Heart Arrest; Male; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Rats; Rats, Sprague-Dawley; Syndecan-1

2022
High-dose intravenous vitamin C decreases rates of mechanical ventilation and cardiac arrest in severe COVID-19.
    Internal and emergency medicine, 2022, Volume: 17, Issue:6

    Intravenous vitamin C (IV-VitC) has been suggested as a treatment for severe sepsis and acute respiratory distress syndrome; however, there are limited studies evaluating its use in severe COVID-19. Efficacy and safety of high-dose IV-VitC (HDIVC) in patients with severe COVID-19 were evaluated. This observational cohort was conducted at a single-center, 530 bed, community teaching hospital and took place from March 2020 through July 2020. Inverse probability treatment weighting (IPTW) was utilized to compare outcomes in patients with severe COVID-19 treated with and without HDIVC. Patients were enrolled if they were older than 18 years of age and were hospitalized secondary to severe COVID-19 infection, indicated by an oxygenation index < 300. Primary study outcomes included mortality, mechanical ventilation, intensive care unit (ICU) admission, and cardiac arrest. From a total of 100 patients enrolled, 25 patients were in the HDIVC group and 75 patients in the control group. The average time to death was significantly longer for HDIVC patients (P = 0.0139), with an average of 22.9 days versus 13.7 days for control patients. Patients who received HDIVC also had significantly lower rates of mechanical ventilation (52.93% vs. 73.14%; OR

    Topics: Antineoplastic Agents; Ascorbic Acid; COVID-19; COVID-19 Drug Treatment; Heart Arrest; Humans; Respiration, Artificial; SARS-CoV-2

2022
Ascorbate deficiency confers resistance to hippocampal neurodegeneration after asphyxial cardiac arrest in juvenile rats.
    Pediatric research, 2022, Volume: 91, Issue:4

    Asphyxial cardiac arrest (CA) is a significant cause of death and disability in children. Using juvenile Osteogenic disorder Shionogi (ODS) rats that, like humans, do not synthesize ascorbate, we tested the effect of ascorbate deficiency on functional and histological outcome after CA.. Postnatal day 16-18 milk-fed ODS and wild-type Wistar rats underwent 9-min asphyxial CA (n = 8/group) or sham surgery (n = 4/group). ODS mothers received ascorbate in drinking water to prevent scurvy. Levels of ascorbate and glutathione (GSH) were measured in plasma and hippocampus at baseline and after CA. Neurologic deficit score (NDS) was measured at 3, 24, and 48 h and hippocampal neuronal counts, neurodegeneration, and microglial activation were assessed at day 7.. ODS rats showed depletion of plasma and hippocampal ascorbate, attenuated hippocampal neurodegeneration and microglial activation, and increased CA1 hippocampal neuron survival vs. Wistar rats while NDS were similar. Hippocampal GSH levels were higher in ODS vs. Wistar rats at baseline and 10 min, whereas hypoxia-inducible factor-1α levels were higher in Wistar vs. ODS rats at 24 , after CA.. Ascorbate-deficient juvenile ODS rats appear resistant to neurodegeneration produced by asphyxia CA, possibly related to upregulation of the endogenous antioxidant GSH in brain.. Like humans and unlike other rodents, osteogenic disorder Shionogi (ODS) rats do not synthesize ascorbate, and thus may serve as a useful model for studying the role of ascorbate in human disease. Conflicting evidence exists regarding ascorbate's protective versus detrimental effects in animal models and clinical studies. Ascorbate-deficient ODS rats are resistant to neurodegeneration after experimental cardiac arrest.

    Topics: Animals; Ascorbic Acid; Asphyxia; Heart Arrest; Hippocampus; Rats; Rats, Wistar

2022
Effects of ω-3 PUFA and ascorbic acid combination on post-resuscitation myocardial function.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2021, Volume: 133

    Accumulating evidence demonstrated that administration of ω-3 polyunsaturated fatty acid (ω-3 PUFA) or ascorbic acid (AA) following cardiac arrest (CA) improves survival. Therefore, we investigate the effects of ω-3 PUFA combined with AA on myocardial function after CA and cardiopulmonary resuscitation (CPR) in a rat model. Thirty male rats were randomized into 5 groups: (1) sham; (2) control; (3) ω-3 PUFA; (4) AA; (5) ω-3 PUFA + AA. Ventricular fibrillation (VF) was induced and untreated for 6 min followed by defibrillation after 8 min of CPR. Infusion of drug or vehicle occurred at the start of CPR. Myocardial function and sublingual microcirculation were measured at baseline and after return of spontaneous circulation (ROSC). Heart tissues and blood were collected 6 h after ROSC. Myocardial function and sublingual microcirculation improvements were seen with ω-3 PUFA or AA compared to control after ROSC (p < 0.05). ω-3 PUFA + AA shows a better myocardial function than ω-3 PUFA or AA (p < 0.05). ω-3 PUFA or AA decreases pro-inflammatory cytokines, cTnI, myocardium malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) modified proteins compared to control (p < 0.05). ω-3 PUFA and AA combined have lower MDA and 4-HNE modified proteins than alone (p < 0.05). ω-3 PUFA or AA treatment reduces the severity of post-resuscitation myocardial dysfunction, improves sublingual microcirculation, decreases lipid peroxidation and systemic inflammation in the early phase of recovery following CA and resuscitation. A combination of ω-3 PUFA and AA treatment confers an additive effect in suppressing lipid peroxidation and improving myocardial function.

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Ascorbic Acid; Biomarkers; Blood Circulation; Cardiopulmonary Resuscitation; Disease Models, Animal; Fatty Acids, Omega-3; Heart Arrest; Inflammation Mediators; Lipid Peroxidation; Male; Myocardium; Oxidative Stress; Rats, Sprague-Dawley; Recovery of Function; Ventricular Fibrillation

2021
Mild Therapeutic Hypothermia Increases Glutathione Levels in Postcardiac Arrest Patients.
    Therapeutic hypothermia and temperature management, 2019, Volume: 9, Issue:1

    Ischemia-reperfusion (I/R)-induced oxidative stress is one of the main mechanisms of tissue injury after cardiac arrest (CA). A decrease in antioxidant defenses may contribute to I/R injury. The present study aims to investigate the influence of mild therapeutic hypothermia (MTH) on levels of nonenzymatic antioxidants after CA. We investigated antioxidant levels at 6, 12, 36, and 72 hours after CA in central venous blood samples of patients admitted to intensive care. The sample consisted of 31 patients under controlled normothermia (36°C) and 11 patients treated with 24 hours of MTH (33°C). Erythrocyte glutathione (GSH) levels were elevated by MTH, increasing at 6, 12, 36, and 72 hours after CA in hypothermic patients (mean GSH levels in normothermic patients: 6 hours = 73.89, 12 hours = 56.45, 36 hours = 56.46, 72 hours = 61.80 vs. hypothermic patients: 6 hours = 176.89, 12 hours = 198.78, 36 hours = 186.96, and 72 hours = 173.68 μmol/g of protein). Vitamin C levels decreased significantly at 6 and 12 hours after CA in hypothermic patients (median vitamin C levels in normothermic patients: 6 hours = 7.53, 12 hours = 9.40, 36 hours = 8.56, and 72 hours = 8.51 vs. hypothermic patients: 6 hours = 5.46, 12 hours = 5.44, 36 hours = 6.10, and 72 hours = 5.89 mmol/L), coinciding with the period of therapeutic hypothermia. Vitamin E and nitric oxide levels were not altered by hypothermic treatment. These findings suggest that MTH alters nonenzymatic antioxidants differently, decreasing circulating vitamin C levels during treatment; however, MTH elevates GSH levels, possibly protecting tissues from I/R injury after CA.

    Topics: Aged; Antioxidants; Ascorbic Acid; Critical Care; Erythrocytes; Female; Glutathione; Heart Arrest; Humans; Hypothermia, Induced; Male; Middle Aged; Nitric Oxide; Prospective Studies; Vitamin E

2019
Adjuvant vitamin C in cardiac arrest patients undergoing renal replacement therapy: an appeal for a higher high-dose.
    Critical care (London, England), 2018, 08-16, Volume: 22, Issue:1

    Topics: Ascorbic Acid; Heart Arrest; Humans; Renal Replacement Therapy; Reperfusion Injury

2018
Response to "Adjuvant vitamin C in cardiac arrest patients undergoing renal replacement therapy: an appeal for a higher high-dose".
    Critical care (London, England), 2018, 12-19, Volume: 22, Issue:1

    Topics: Ascorbic Acid; Heart Arrest; Humans; Renal Replacement Therapy; Vitamins

2018
Mechanistic characterization of nitrite-mediated neuroprotection after experimental cardiac arrest.
    Journal of neurochemistry, 2016, Volume: 139, Issue:3

    Nitrite acts as an ischemic reservoir of nitric oxide (NO) and a potent S-nitrosating agent which reduced histologic brain injury after rat asphyxial cardiac arrest (ACA). The mechanism(s) of nitrite-mediated neuroprotection remain to be defined. We hypothesized that nitrite-mediated brain mitochondrial S-nitrosation accounts for neuroprotection by reducing reperfusion reactive oxygen species (ROS) generation. Nitrite (4 μmol) or placebo was infused IV after normothermic (37°C) ACA in randomized, blinded fashion with evaluation of neurologic function, survival, brain mitochondrial function, and ROS. Blood and CSF nitrite were quantified using reductive chemiluminescence and S-nitrosation by biotin switch. Direct neuroprotection was verified in vitro after 1 and 4 h neuronal oxygen glucose deprivation measuring neuronal death with inhibition studies to examine mechanism. Mitochondrial ROS generation was quantified by live neuronal imaging using mitoSOX. Nitrite significantly reduced neurologic disability after ACA. ROS generation was reduced in brain mitochondria from nitrite- versus placebo-treated rats after ACA with congruent preservation of brain ascorbate and reduction of ROS in brain sections using immuno-spin trapping. ATP generation was maintained with nitrite up to 24 h after ACA. Nitrite rapidly entered CSF and increased brain mitochondrial S-nitrosation. Nitrite reduced in vitro mitochondrial superoxide generation and improved survival of neurons after oxygen glucose deprivation. Protection was maintained with inhibition of soluble guanylate cyclase but lost with NO scavenging and ultraviolet irradiation. Nitrite therapy results in direct neuroprotection from ACA mediated by reductions in brain mitochondrial ROS in association with protein S-nitrosation. Neuroprotection is dependent on NO and S-nitrosothiol generation, not soluble guanylate cyclase.

    Topics: Animals; Ascorbic Acid; Asphyxia; Brain Chemistry; Cell Survival; Free Radical Scavengers; Glucose; Guanylate Cyclase; Heart Arrest; Male; Mitochondria; Neurons; Neuroprotection; Neuroprotective Agents; Nitric Oxide; Nitrites; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Superoxides; Survival Analysis

2016
Combination of intravenous ascorbic acid administration and hypothermia after resuscitation improves myocardial function and survival in a ventricular fibrillation cardiac arrest model in the rat.
    Academic emergency medicine : official journal of the Society for Academic Emergency Medicine, 2014, Volume: 21, Issue:3

    Intravenous (IV) administration of ascorbic acid during cardiopulmonary resuscitation (CPR) was reported to facilitate defibrillation and improves survival in ventricular fibrillation (VF) cardiac arrest. We investigated whether IV administration of ascorbic acid after return of spontaneous circulation (ROSC) can improve outcomes in VF cardiac arrest in a rat model and its interaction with therapeutic hypothermia.. Ventricular fibrillation-induced cardiac arrest followed by CPR and defibrillation was performed in male Wistar rats. After ROSC, the animals were equally randomized to the normothermia (NormoT), hypothermia (HypoT), ascorbic acid (AA+NormoT), and ascorbic acid plus hypothermia (AA+HypoT) groups. The AA+NormoT and AA+HypoT groups received IV ascorbic acid (100 mg/kg). In the HypoT and AA+HypoT groups, therapeutic hypothermia was maintained at 32°C for 2 hours.. There were 12 rats in each group. Within 4 hours after ROSC, the HypoT, AA+NormoT, and AA+HypoT groups had significantly lower myocardial lipid peroxidation than the NormoT group. Within 4 hours following ROSC, the AA+NormoT group had a significantly better systolic function (dp/dt40 ) than the NormoT group (6887.9 mm Hg/sec, SD ± 1049.7 mm Hg/sec vs. 5953.6 mm Hg/sec, SD ± 1161.9 mm Hg/sec; p < 0.05). The AA+HypoT group also showed a significantly better diastolic function (-dp/dtmax ) than the HypoT group (dp/dt40 : 8524.8, SD ± 1166.7 mm Hg/sec vs. 7399.8 mm Hg/sec, SD ± 1114.5 mmHg/sec; dp/dtmax : -8183.4 mm Hg/sec, SD ± 1359.0 mm Hg/sec vs. -6573.7 mm Hg/sec, SD ± 1110.9 mm Hg/sec; p < 0.05) at the fourth hour following ROSC. Also at 4 hours, there was less myocytolysis in the HypoT, AA+NormoT, and AA+HypoT groups than the NormoT group. The HypoT, AA+NormoT, and AA+HypoT groups had significantly better survival rates and neurologic outcomes than the NormoT group. Compared with only five surviving animals in the NormoT group, there were nine, eight, and 10 in the HypoT, AA+NormoT, and AA+HypoT groups, respectively, with good neurologic outcomes at 72 hours.. Intravenous ascorbic acid administration after ROSC in normothermia may mitigate myocardial damage and improve systolic function, survival rate, and neurologic outcomes in VF cardiac arrest of rat. Combination of ascorbic acid and hypothermia showed an additive effect in improving both systolic and diastolic functions after ROSC.

    Topics: Animals; Ascorbic Acid; Cardiopulmonary Resuscitation; Diastole; Disease Models, Animal; Electric Countershock; Heart Arrest; Hemodynamics; Hypothermia; Hypothermia, Induced; Infusions, Intravenous; Lipid Peroxidation; Male; Myocardial Contraction; Myocardium; Rats; Rats, Wistar; Survival Analysis; Systole; Ventricular Fibrillation

2014
Ascorbic acid mitigates the myocardial injury after cardiac arrest and electrical shock.
    Intensive care medicine, 2011, Volume: 37, Issue:12

    To examine the effects of ascorbic acid (AA) administrated during cardiopulmonary resuscitation (CPR) on the myocardial injury in a rat model of ventricular fibrillation (VF) and electrical shock (ES).. VF was induced in male Wistar rats and left untreated for 5 min, followed by 1 min of CPR, and then one ES of 5 J. At the start of CPR, animals received either intravenous administration of AA (100 mg/kg) or Tempol (30 mg/kg), two antioxidants, or 0.9% saline (VF + ES group). After ES, animals were immediately killed. Myocardial lipoxidation was determined by malondialdehyde (MDA) assay. The histology and ultrastructural changes of myocardium were also evaluated. The mitochondrial permeability transition pore (mPTP) opening was measured based on the mitochondrial swelling rate. The complex activities and respiration of mitochondria were assessed, too.. Increased myocardial injury and mitochondrial damage in the VF + ES group were noted. AA and Tempol alleviated such damages. Both AA and Tempol improved accelerated mitochondrial swelling; decreased complex activities and respiratory dysfunction occurred in the VF + ES group. The animals receiving AA and Tempol during CPR had better successful resuscitation rates and 72-h survival than the VF + ES group.. Intravenous administration of AA and Tempol at the start of CPR may reduce lipid peroxidation and myocardial necrosis, diminish mitochondrial damage, facilitate resuscitation, and improve outcomes after VF + ES.

    Topics: Animals; Antioxidants; Ascorbic Acid; Cardiopulmonary Resuscitation; Electric Countershock; Heart Arrest; Heart Injuries; Male; Rats; Rats, Wistar; Taiwan; Ventricular Fibrillation

2011
Electron spin resonance measure of brain antioxidant activity during ischemia/reperfusion.
    Neuroreport, 1998, May-11, Volume: 9, Issue:7

    An electron spin resonance technique was used to measure cerebral antioxidant activity during asphyxial cardiac arrest and reperfusion. There were significant decreases in ascorbate (48%), glutathione (44%), total thiols (42%), protein thiols (38%) and alpha-tocopherol (26%) in the hippocampus 10 min after reperfusion (p < 0.05 vs respective baselines) but not during asphyxial cardiac arrest. The levels of antioxidants returned to baseline values by 120 min after reperfusion. The results support the hypothesis that reperfusion from asphyxial cardiac arrest, but not arrest alone, produced a significant oxidative stress as reflected by a depletion of both water and lipid soluble antioxidants. Furthermore, antioxidant depletion was transient, with normal antioxidant levels observed 120 min, 24 h and 72 h after reperfusion.

    Topics: Analysis of Variance; Animals; Antioxidants; Ascorbic Acid; Asphyxia; Carbon Dioxide; Consciousness; Cranial Nerves; Electron Spin Resonance Spectroscopy; Glutathione; Heart Arrest; Hippocampus; Monophenol Monooxygenase; Myocardial Ischemia; Myocardial Reperfusion; Nerve Tissue Proteins; Oxidative Stress; Oxygen; Partial Pressure; Rats; Rats, Sprague-Dawley; Respiration; Sulfhydryl Compounds; Time Factors; Vitamin E

1998