ascorbate-2-phosphate has been researched along with Fibrosis* in 2 studies
2 other study(ies) available for ascorbate-2-phosphate and Fibrosis
Article | Year |
---|---|
Cell sheet composed of adipose-derived stem cells demonstrates enhanced skin wound healing with reduced scar formation.
Scar formation remains a major clinical concern following tissue injuries such as skin wounds. Adipose-derived stem cell (ASC) sheets can be fabricated quickly through stimulation with l-ascorbate 2-phosphate and have valuable applications in tissue regeneration and wound healing. However, the antifibrotic capability of ASCs in cell sheet format has not been sufficiently investigated. We employed a murine model of healing-impaired cutaneous wounds and observed faster wound healing with ASC sheet treatment. Significantly more engrafted ASCs were observed in the wound tissue treated with ASC sheets at 14 days after wounding compared with dissociated cells. Moreover, no ASCs were found at day 28, which indicated a minimal risk of long-term side effects. The neoskin formed in the presence of ASC sheets exhibited a thickness comparable to normal skin and possessed a highly organized collagen structure. ASC sheets also suppressed macrophage infiltration and modulated TNF-α and TGF-β1 expression in vivo. Examination of fibroblasts cultured in ASC-conditioned medium indicated an anti-scarring effect of the ASC sheets evidenced by the downregulation of TGF-β1 and α-SMA in fibroblasts, which was likely mediated through the increased secretion of hepatocyte growth factor. Moreover, ASC sheets secreted significantly more C1q/TNF-related protein-3, which inhibited the C-C motif ligand 2 release by macrophages in vitro and subsequently reduced the chemotaxis of unstimulated macrophages. This mechanism may account for the observed decrease in recruitment of macrophages into the wound tissue. We conclude that ASC sheets possess the necessary paracrine factors to improve skin wound healing with a superior neoskin quality.. Adipose-derived stem cell (ASC) sheets exhibit great potential for tissue regeneration. In this study, we investigated whether ASC sheets can ameliorate skin wound healing with reduced scar formation, and faster wound healing was observed when applying ASC sheets in an impaired wound healing model of mice. The neoskin formed in the presence of ASC sheets exhibited a thickness comparable to normal skin with a more organized collagen structure. In vitro experiments suggested that the anti-scarring effect of the ASC sheets was partly mediated through increased secretion of hepatocyte growth factor. Moreover, ASC sheets secreted significantly more C1q/TNF-related protein-3, which may account for the decreased recruitment of macrophages into the wound tissue. Therefore, ASC sheets possess the necessary paracrine factors to improve skin wound healing with less scarring, thus representing a desirable method of topical wound treatment. Topics: Adipocytes; Adult; Animals; Ascorbic Acid; Chemotaxis; Cicatrix; Female; Fibrosis; Humans; Macrophages; Mice; Mice, Nude; Middle Aged; Regeneration; Regenerative Medicine; Skin; Stem Cell Transplantation; Stem Cells; Wound Healing | 2018 |
Conditioned mesenchymal stem cells attenuate progression of chronic kidney disease through inhibition of epithelial-to-mesenchymal transition and immune modulation.
Mesenchymal stem cells (MSCs) have been shown to improve the outcome of acute renal injury models; but whether MSCs can delay renal failure in chronic kidney disease (CKD) remains unclear. In the present study, the were cultured in media containing various concentrations of basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2-phosphate to investigate whether hepatocyte growth factor (HGF) secretion could be increased by the stimulation of these growth factors. Then, TGF-β1-treated renal interstitial fibroblast (NRK-49F), renal proximal tubular cells (NRK-52E) and podocytes were co-cultured with conditioned MSCs in the absence or presence of ascorbic acid 2-phosphate to quantify the protective effects of conditioned MSCs on renal cells. Moreover, male Sprague-Dawley rats were treated with 1 × 10(6) conditioned MSCs immediately after 5/6 nephrectomy and every other week through the tail vein for 14 weeks. It was found that basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2-phosphate promoted HGF secretion in MSCs. Besides, conditioned MSCs were found to be protective against TGF-β1 induced epithelial-to-mesenchymal transition of NRK-52E and activation of NRK-49F cells. Furthermore, conditioned MSCs protected podocytes from TGF-β1-induced loss of synaptopodin, fibronectin induction, cell death and apoptosis. Rats transplanted with conditioned human MSCs had a significantly increase in creatinine clearance rate, decrease in glomerulosclerosis, interstitial fibrosis and increase in CD4(+)CD25(+)Foxp3(+) regulatory T cells counts in splenocytes. Together, our studies indicated that conditioned MSCs preserve renal function by their anti-fibrotic and anti-inflammatory effects. Transplantation of conditioned MSCs may be useful in treating CKD. Topics: Animals; Apoptosis; Ascorbic Acid; CD4-Positive T-Lymphocytes; Cells, Cultured; Coculture Techniques; Creatinine; Disease Progression; Epidermal Growth Factor; Epithelial-Mesenchymal Transition; Female; Fibroblast Growth Factor 2; Fibronectins; Fibrosis; Glomerulosclerosis, Focal Segmental; Hepatocyte Growth Factor; Humans; Kidney; Kidney Tubules, Proximal; Lymphocyte Count; Male; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Microfilament Proteins; Middle Aged; Nephrectomy; Podocytes; Rats; Rats, Sprague-Dawley; Renal Insufficiency, Chronic; Transforming Growth Factor beta1; Young Adult | 2012 |