artepillin-c has been researched along with Obesity* in 3 studies
1 review(s) available for artepillin-c and Obesity
Article | Year |
---|---|
Anthocyanins and Curcumin: Possible Abilities of Prevention of Diabetes and Obesity via Stimulation of Glucagon-Like Peptide-1 Secretion and Induction of Beige Adipocyte Formation.
There is growing interest in the health benefits of natural plant pigments such as anthocyanins and curcumin. In this review, we introduce how these pigments can contribute to the prevention of diabetes and obesity by stimulating glucagon-like peptide-1 (GLP-1) secretion or inducing beige adipocyte formation. Of the anthocyanins, delphinidin 3-rutinoside (D3R) was shown to increase GLP-1 secretion. Pre-administered D3R-rich blackcurrant extract (BCE) significantly ameliorated glucose tolerance after intraperitoneal glucose injection in rats by stimulating the secretion of GLP-1 and subsequently inducing insulin secretion. D3R did not break down significantly in the gastrointestinal tract for at least 45-60 min after BCE administration. An increase in endogenous GLP-1 secretion induced by food-derived factors may help to reduce the dosages of diabetic medicines and prevent diabetes. Curcumin has various biological functions, including anti-obesity and anti-diabetic properties. However, high doses of curcumin have been administered in most animal and human trials to date, due mainly to the poor solubility of native curcumin in water and its low oral bioavailability. We demonstrated that a highly dispersible and bioavailable curcumin formulation (HC), but not native curcumin, induces the formation of beige adipocytes. Furthermore, co-administration of HC and artepillin C (a characteristic constituent of Brazilian propolis) at lower doses significantly induces beige adipocyte formation in mice, but administration of the same dose of HC or artepillin C alone does not. Our studies demonstrate that curcumin formulations or the co-administration of curcumin with other food-derived factors provide effects that native curcumin alone does not. Topics: Adipocytes, Beige; Animals; Anthocyanins; Curcumin; Diabetes Mellitus; Glucagon-Like Peptide 1; Glucose; Humans; Mice; Obesity; Rats; Ribes | 2022 |
2 other study(ies) available for artepillin-c and Obesity
Article | Year |
---|---|
Artepillin C, a Key Component of Brazilian Propolis, Induces Thermogenesis in Inguinal White Adipose Tissue of Mice through a Creatine-Metabolism-Related Thermogenic Pathway.
Topics: Adipocytes, Beige; Adipose Tissue, White; Animals; Body Temperature; Brazil; Creatine; Humans; Male; Mice; Mice, Inbred C57BL; Obesity; Phenylpropionates; Propolis; Thermogenesis | 2020 |
Artepillin C, a Typical Brazilian Propolis-Derived Component, Induces Brown-Like Adipocyte Formation in C3H10T1/2 Cells, Primary Inguinal White Adipose Tissue-Derived Adipocytes, and Mice.
Induction of brown-like adipocytes (beige/brite cells) in white adipose tissue (WAT) suggests a new approach for preventing and treating obesity via induction of thermogenesis associated with uncoupling protein 1 (UCP1). However, whether diet-derived factors can directly induce browning of white adipocytes has not been well established. In addition, the underlying mechanism of induction of brown-like adipocytes by diet-derived factors has been unclear. Here, we demonstrate that artepillin C (ArtC), which is a typical Brazilian propolis-derived component, significantly induces brown-like adipocytes in murine C3H10T1/2 cells and primary inguinal WAT (iWAT)-derived adipocytes. This significant induction is due to activation of peroxisome proliferator-activated receptor γ and stabilization of PRD1-BF-1-RIZ1 homologous domain-containing protein-16 (PRDM16). Furthermore, the oral administration of ArtC (10 mg/kg) for 4 weeks significantly induced brown-like adipocytes accompanied by significant expression of UCP1 and PRDM16 proteins in iWAT of mice, and was independent of the β3-adrenergic signaling pathway via the sympathetic nervous system. These findings may provide insight into browning of white adipocytes including the molecular mechanism mediated by dietary factors and demonstrate that ArtC has a novel biological function with regard to increasing energy expenditure by browning of white adipocytes. Topics: Adipocytes, Brown; Adipocytes, White; Adipose Tissue, Brown; Adipose Tissue, White; Administration, Oral; Animals; Anti-Obesity Agents; Cell Line; DNA-Binding Proteins; Energy Metabolism; Gene Expression Regulation; Male; Mice; Mice, Inbred C57BL; Obesity; Phenylpropionates; PPAR gamma; Primary Cell Culture; Propolis; Signal Transduction; Thermogenesis; Transcription Factors; Uncoupling Protein 1 | 2016 |