arachidonyltrifluoromethane and Neuroblastoma

arachidonyltrifluoromethane has been researched along with Neuroblastoma* in 2 studies

Other Studies

2 other study(ies) available for arachidonyltrifluoromethane and Neuroblastoma

ArticleYear
Swelling-induced arachidonic acid release via the 85-kDa cPLA2 in human neuroblastoma cells.
    Journal of neurophysiology, 1998, Volume: 79, Issue:3

    Arachidonic acid or its metabolites have been implicated in the regulatory volume decrease (RVD) response after hypotonic cell swelling in some mammalian cells. The present study investigated the role of arachidonic acid (AA) during RVD in the human neuroblastoma cell line CHP-100. During the first nine minutes of hypo-osmotic exposure the rate of 3H-arachidonic acid (3H-AA) release increased to 250 +/- 19% (mean +/- SE, n = 22) as compared with cells under iso-osmotic conditions. This release was significantly inhibited after preincubation with AACOCF3, an inhibitor of the 85-kDa cytosolic phospholipase A2 (cPLA2). This indicates that a PLA2, most likely the 85-kDa cPLA2 is activated during cell swelling. In contrast, preincubation with U73122, an inhibitor of phospholipase C, did not affect the swelling-induced release of 3H-AA. Swelling-activated efflux of 36Cl and 3H-taurine were inhibited after preincubation with AACOCF3. Thus the swelling-induced activation of cPLA2 may be essential for stimulation of both 36Cl and 3H-taurine efflux during RVD. As the above observation could result from a direct effect of AA or its metabolite leukotriene D4 (LTD4), the effects of these agents were investigated on swelling-induced 36Cl and 3H-taurine effluxes. In the presence of high concentrations of extracellular AA, the swelling-induced efflux of 36Cl and 3H-taurine were inhibited significantly. In contrast, addition of exogenous LTD4 had no significant effect on the swelling-activated 36Cl efflux. Furthermore, exogenous AA increased cytosolic calcium levels as measured in single cells loaded with the calcium sensitive dye Fura-2. On the basis of these results we propose that cell swelling activates phospholipase A2 and that this activation via an increased production of AA or some AA metabolite(s) other than LTD4 is essential for RVD.

    Topics: Arachidonic Acid; Arachidonic Acids; Chlorides; Cytosol; Egtazic Acid; Enzyme Inhibitors; Estrenes; Humans; Hypotonic Solutions; Kinetics; Leukotriene D4; Molecular Weight; Neuroblastoma; Osmolar Concentration; Phosphodiesterase Inhibitors; Phospholipases A; Phospholipases A2; Pyrrolidinones; Taurine; Tumor Cells, Cultured

1998
Biosynthesis, release and degradation of the novel endogenous cannabimimetic metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells.
    The Biochemical journal, 1997, Mar-01, Volume: 322 ( Pt 2)

    The monoacylglycerol 2-arachidonoylglycerol (2-AG) has been recently suggested as a possible endogenous agonist at cannabinoid receptors both in brain and peripheral tissues. Here we report that a widely used model for neuronal cells, mouse N18TG2 neuroblastoma cells, which contain the CB1 cannabinoid receptor, also biosynthesize, release and degrade 2-AG. Stimulation with ionomycin (1-5 microM) of intact cells prelabelled with [3H]arachidonic acid ([3H]AA) led to the formation of high levels of a radioactive component with the same chromatographic behaviour as synthetic standards of 2-AG in TLC and HPLC analyses. The amounts of this metabolite were negligible in unstimulated cells, and greatly decreased in cells stimulated in the presence of the Ca2+-chelating agent EGTA. The purified component was further characterized as 2-AG by: (1) digestion with Rhizopus arrhizus lipase, which yielded radiolabelled AA; (2) gas chromatographic-MS analyses; and (3) TLC analyses on borate-impregnated plates. Approx. 20% of the 2-AG produced by stimulated cells was found to be released into the incubation medium when this contained 0.1% BSA. Subcellular fractions of N18TG2 cells were shown to contain enzymic activity or activities catalysing the hydrolysis of synthetic [3H]2-AG to [3H]AA. Cell homogenates were also found to convert synthetic [3H]sn-1-acyl-2-arachidonoylglycerols (AcAGs) into [3H]2-AG, suggesting that 2-AG might be derived from AcAG hydrolysis. When compared with ionomycin stimulation, treatment of cells with exogenous phospholipase C, but not with phospholipase D or A2, led to a much higher formation of 2-AG and AcAGs. However, treatment of cells with phospholipase A2 10 min before ionomycin stimulation caused a 2.5-3-fold potentiation of 2-AG and AcAG levels with respect to ionomycin alone, whereas preincubation with the phospholipase C inhibitor neomycin sulphate did not inhibit the effect of ionomycin on 2-AG and AcAG levels. These results suggest that the Ca2+-induced formation of 2-AG proceeds through the intermediacy of AcAGs but not necessarily through phospholipase C activation. By showing for the first time the existence of molecular mechanisms for the inactivation and the Ca2+-dependent biosynthesis and release of 2-AG in neuronal cells, the present paper supports the hypothesis that this cannabimimetic monoacylglycerol might be a physiological neuromodulator.

    Topics: Animals; Arachidonic Acids; Calcium; Calcium Channel Blockers; Cannabinoids; Endocannabinoids; Enzyme Inhibitors; Glycerides; Hydrolysis; Ionomycin; Ionophores; Mice; Neuroblastoma; Neurons; Polyunsaturated Alkamides; Receptors, Cannabinoid; Receptors, Drug; Subcellular Fractions; Tumor Cells, Cultured

1997