arachidonyltrifluoromethane and Neuralgia

arachidonyltrifluoromethane has been researched along with Neuralgia* in 2 studies

Other Studies

2 other study(ies) available for arachidonyltrifluoromethane and Neuralgia

ArticleYear
Calcium-independent phospholipase A2 inhibitor produces an analgesic effect in a rat model of neuropathic pain by reducing central sensitization in the dorsal horn.
    Neurological research, 2021, Volume: 43, Issue:8

    Phospholipase A2 (PLA2) plays an important role in regulating the production of arachidonic acid and various eicosanoids. The aim of our study was to investigate the analgesic mechanisms of calcium-dependent cytosolic phospholipase A2 and calcium-independent PLA2 (iPLA2) inhibitors in the spinal cord in a rat model of neuropathic pain.. Lumbar 5 spinal nerve ligation was performed in male Sprague-Dawley rats to develop a peripheral neuropathic pain model. Paw withdrawal thresholds in response to von Frey filaments, brush, pressure, and pinch were measured. Lumbar wide dynamic range neuronal firing rates and iPLA2 subtype expression were measured by. In our rat models, oral administration of prednisolone, a non-selective PLA2 inhibitor, and intrathecal injection of bromoenolactone, a iPLA2 inhibitor, significantly increased the ipsilateral hindpaw withdrawal thresholds in response to von Frey filament stimulation, but intrathecal injection of arachidonyl trifluoromethyl ketone, a selective cytosolic PLA2 inhibitor, did not show significant changes. In spinal dorsal horn neurons, bromoenolactone reduced neuronal firing rates in response to withdrawal stimulation and spontaneous firing rates in the ipsilateral side of the spinal dorsal horn. In addition, the expression of iPLA2 was co-localized with astrocytes and neurons on the ipsilateral side of the dorsal horn in rats that underwent spinal nerve ligation.. These data suggest that selective iPLA2 inhibitor produce analgesia in neuropathic rats by reducing central sensitization in the dorsal horn.

    Topics: Administration, Oral; Analgesics; Animals; Anti-Inflammatory Agents; Arachidonic Acids; Enzyme Inhibitors; Injections, Spinal; Male; Neuralgia; Phospholipases A2, Calcium-Independent; Prednisolone; Rats; Rats, Sprague-Dawley; Spinal Cord Dorsal Horn

2021
Evidence for de novo synthesis of lysophosphatidic acid in the spinal cord through phospholipase A2 and autotaxin in nerve injury-induced neuropathic pain.
    The Journal of pharmacology and experimental therapeutics, 2010, Volume: 333, Issue:2

    We previously reported that lysophosphatidic acid (LPA) initiates nerve injury-induced neuropathic pain and its underlying mechanisms. In addition, we recently demonstrated that intrathecal injection of LPA induces de novo LPA production through the action of autotaxin (ATX), which converts lysophosphatidylcholine to LPA. Here, we examined nerve injury-induced de novo LPA production by using a highly sensitive biological titration assay with B103 cells expressing LPA1 receptors. Nerve injury caused high levels of LPA production in the ipsilateral sides of the spinal dorsal horn and dorsal roots, but not in the dorsal root ganglion, spinal nerve, or sciatic nerve. Nerve injury-induced LPA production reached its maximum at 3 h after injury, followed by a rapid decline by 6 h. The LPA production was significantly attenuated in ATX heterozygous mutant mice, whereas the concentration and activity of ATX in cerebrospinal fluid were not affected by nerve injury. On the other hand, the activities of cytosolic phospholipase A2 (cPLA2) and calcium-independent phospholipase A2 (iPLA2) were enhanced, with peaks at 1 h after injury. Both de novo LPA production and neuropathic pain-like behaviors were substantially abolished by intrathecal injection of arachidonyl trifluoromethyl ketone, a mixed inhibitor of cPLA2 and iPLA2, or bromoenol lactone, an iPLA2 inhibitor, at 1 h after injury. However, administration of these inhibitors at 6 h after injury had no significant effect on neuropathic pain. These findings provide evidence that PLA2- and ATX-mediated de novo LPA production in the early phase is involved in nerve injury-induced neuropathic pain.

    Topics: Animals; Arachidonic Acids; Blotting, Western; Cell Line; Injections, Spinal; Lysophosphatidylcholines; Lysophospholipids; Male; Mice; Mice, Inbred C57BL; Multienzyme Complexes; Naphthalenes; Neuralgia; Pain Measurement; Phosphodiesterase I; Phospholipase A2 Inhibitors; Phospholipases A2; Phosphoric Diester Hydrolases; Posterior Horn Cells; Pyrones; Pyrophosphatases; Sciatic Nerve; Spinal Nerve Roots

2010