arachidonylcyclopropylamide has been researched along with Pain* in 3 studies
3 other study(ies) available for arachidonylcyclopropylamide and Pain
Article | Year |
---|---|
Comparative antinociceptive effect of arachidonylcyclopropylamide, a cannabinoid 1 receptor agonist & lignocaine, a local anaesthetic agent, following direct intrawound administration in rats.
Treatment of inflammatory pain with opioids is accompanied by unpleasant and, at times, life-threatening side effects.Cannabis produces antinociception as well as psychotropic effects. It was hypothesized that peripheral cannabinoid receptors outside the central nervous system could be selectively activated for relief of pain. This study was undertaken to measure the antinociceptive effect of type 1 cannabinoid receptor (CB1r) agonist arachidonylcyclopropylamide (ACPA) in a rat model of inflammatory pain after intrawound administration and the effects were compared with lignocaine.. Wounds were produced under controlled conditions by an incision in the right hind paw in rats. ACPA (10, 30 or 100 μg/10 μl) was administered directly into the wound. Antinociception was evaluated by guarding, allodynia and thermal hyperalgesia. This was compared to lignocaine (30 μg/10 μl). Reversal of ACPA (30 μg)-mediated antinociceptive effect was attempted by intrawound AM251 (100 μg), a CB1r antagonist. Antinociception was also evaluated after contralateral administration of ACPA (30 μg). Primary afferent nociceptive input to the spinal cord was investigated by c-Fos expression after ACPA treatment (100 μg).. ACPA, but not lignocaine, inhibited guarding behaviour, which was locally mediated. Conversely, lignocaine, but not ACPA, inhibited thermal hyperalgesia and mechanical allodynia. ACPA-mediated inhibitory effect was reversible and dose dependent. It was associated with a decreased c-Fos expression. Locomotor activity was unaffected following ACPA (100 μg) treatment.. Lignocaine attenuated evoked pain behaviour whereas ACPA decreased guarding score. This difference was likely due to blockade of sodium ion channels and the activation of peripheral CB1r, respectively. Central side effects were absent after ACPA treatment. Further studies need to be done to assess the effect of ACPA treatment in clinical conditions. Topics: Analgesics; Animals; Arachidonic Acids; Humans; Lidocaine; Male; Pain; Pain Measurement; Rats; Receptor, Cannabinoid, CB1; Spinal Cord; Wound Healing | 2016 |
Endocannabinoids in the brainstem modulate dural trigeminovascular nociceptive traffic via CB1 and "triptan" receptors: implications in migraine.
Activation and sensitization of trigeminovascular nociceptive pathways is believed to contribute to the neural substrate of the severe and throbbing nature of pain in migraine. Endocannabinoids, as well as being physiologically analgesic, are known to inhibit dural trigeminovascular nociceptive responses. They are also involved in the descending modulation of cutaneous-evoked C-fiber spinal nociceptive responses from the brainstem. The purpose of this study was to determine whether endocannabinoids are involved in the descending modulation of dural and/or cutaneous facial trigeminovascular nociceptive responses, from the brainstem ventrolateral periaqueductal gray (vlPAG). CB1 receptor activation in the vlPAG attenuated dural-evoked Aδ-fiber neurons (maximally by 19%) and basal spontaneous activity (maximally by 33%) in the rat trigeminocervical complex, but there was no effect on cutaneous facial receptive field responses. This inhibitory vlPAG-mediated modulation was inhibited by specific CB1 receptor antagonism, given via the vlPAG, and with a 5-HT1B/1D receptor antagonist, given either locally in the vlPAG or systemically. These findings demonstrate for the first time that brainstem endocannabinoids provide descending modulation of both basal trigeminovascular neuronal tone and Aδ-fiber dural-nociceptive responses, which differs from the way the brainstem modulates spinal nociceptive transmission. Furthermore, our data demonstrate a novel interaction between serotonergic and endocannabinoid systems in the processing of somatosensory nociceptive information, suggesting that some of the therapeutic action of triptans may be via endocannabinoid containing neurons in the vlPAG. Topics: Animals; Arachidonic Acids; Bicuculline; Cannabinoid Receptor Agonists; Disease Models, Animal; Endocannabinoids; GABA-A Receptor Antagonists; Male; Microinjections; Nerve Fibers, Myelinated; Pain; Periaqueductal Gray; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Reaction Time; Receptor, Cannabinoid, CB1; Receptors, Serotonin; Serotonin Agents; Serotonin Antagonists; Skin; Trigeminal Nuclei | 2013 |
CB1 and CB2 receptor agonists promote analgesia through synergy in a murine model of tumor pain.
In light of the adverse side-effects of opioids, cannabinoid receptor agonists may provide an effective alternative for the treatment of cancer pain. This study examined the potency and efficacy of synthetic CB1 and CB2 receptor agonists in a murine model of tumor pain. Intraplantar injection of the CB1 receptor agonist arachidonylcyclopropylamide (ED(50) of 18.4 μg) reduced tumor-related mechanical hyperalgesia by activation of peripheral CB1 but not CB2 receptors. Similar injection of the CB2 receptor agonist AM1241 (ED50 of 19.5 μg) reduced mechanical hyperalgesia by activation of peripheral CB2 but not CB1 receptors. Both agonists had an efficacy comparable with that of morphine (intraplantar), but their analgesic effects were independent of opioid receptors. Isobolographic analysis of the coinjection of arachidonylcyclopropylamide and AM1241 determined that the CB1 and CB2 receptor agonists interacted synergistically to reduce mechanical hyperalgesia in the tumor-bearing paw. These data extend our previous findings that the peripheral cannabinoid receptors are a promising target for the management of cancer pain and mixed cannabinoid receptor agonists may have a therapeutic advantage over selective agonists. Topics: Analgesics; Animals; Arachidonic Acids; Cannabinoids; Disease Models, Animal; Drug Synergism; Hyperalgesia; Male; Mice; Mice, Inbred C3H; Morphine; Neoplasms, Experimental; Pain; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2011 |