arachidonyl-2-chloroethylamide and Epilepsy

arachidonyl-2-chloroethylamide has been researched along with Epilepsy* in 4 studies

Other Studies

4 other study(ies) available for arachidonyl-2-chloroethylamide and Epilepsy

ArticleYear
A Long-Term Treatment with Arachidonyl-2'-Chloroethylamide Combined with Valproate Increases Neurogenesis in a Mouse Pilocarpine Model of Epilepsy.
    International journal of molecular sciences, 2017, Apr-25, Volume: 18, Issue:5

    Rational polytherapy in the treatment of refractory epilepsy has been the main therapeutic modality for several years. In treatment with two or more antiepileptic drugs (AEDs), it is of particular importance that AEDs be selected based on their high anticonvulsant properties, minimal side effects, and impact on the formation of new neurons. The aim of the study was to conduct an in vivo evaluation of the relationship between treatments with synthetic cannabinoid arachidonyl-2'-chloroethylamide (ACEA) alone or in combination with valproic acid (VPA) and hippocampal neurogenesis in a mouse pilocarpine model of epilepsy. All studies were performed on adolescent male CB57/BL mice with using the following drugs: VPA (10 mg/kg), ACEA (10 mg/kg), phenylmethylsulfonyl fluoride (PMSF-a substance protecting ACEA against degradation by fatty acid hydrolase, 30 mg/kg), pilocarpine (PILO, a single dose of 290 mg/kg) and methylscopolamine (30 min before PILO to stop peripheral cholinergic effects of pilocarpine, 1 mg/kg). We evaluated the process of neurogenesis after a 10-day treatment with ACEA and VPA, alone and in combination. We observed a decrease of neurogenesis in the PILO control group as compared to the healthy control mice. Furthermore, ACEA + PMSF alone and in combination with VPA significantly increased neurogenesis compared to the PILO control group. In contrast, VPA 10-day treatment had no impact on the level of neurons in comparison to the PILO control group. The combination of ACEA, PMSF and VPA considerably stimulated the process of creating new cells, particularly neurons, while chronic administration of VPA itself had no influence on neurogenesis in the mouse pilocarpine model of epilepsy. The obtained results enabled an in vivo evaluation of neurogenesis after treatment with antiepileptic drugs in an experimental model of epilepsy.

    Topics: Animals; Anticonvulsants; Arachidonic Acids; Astrocytes; Disease Models, Animal; Drug Therapy, Combination; Epilepsy; Immunohistochemistry; Male; Mice; Mice, Inbred C57BL; Microscopy, Confocal; Neurogenesis; Pilocarpine; Valproic Acid

2017
The interaction between ghrelin and cannabinoid systems in penicillin-induced epileptiform activity in rats.
    Neuropeptides, 2014, Volume: 48, Issue:6

    The majority of experimental and clinical studies show that ghrelin and cannabinoids are potent inhibitors of epileptic activity in various models of epilepsy. A number of studies have attempted to understand the connection between ghrelin and cannabinoid signalling in the regulation of food intake. Since no data show a functional interaction between ghrelin and cannabinoids in epilepsy, we examined the relationship between these systems via penicillin-induced epileptiform activity in rats. Doses of the CB1 receptor agonist arachidonyl-2-chloroethylamide (ACEA) (2.5 and 7.5 µg), the CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3 carboxamide (AM-251) (0.25 and 0.5 µg) and ghrelin (0.5 and 1 µg) were administered intracerebroventricularly (i.c.v.) 30 minutes after the intracortical (i.c.) application of penicillin. In the interaction groups, the animals received either an effective dose of ACEA (7.5 µg, i.c.v.) or a non-effective dose of ACEA (2.5 µg, i.c.v.) or effective doses of AM-251 (0.25, 0.5 µg, i.c.v.) 10 minutes after ghrelin application. A 1 µg dose of ghrelin suppressed penicillin-induced epileptiform activity. The administration of a 0.25 µg dose of AM-251 increased the frequency of penicillin-induced epileptiform activity by producing status epilepticus-like activity. A 7.5 µg dose of ACEA decreased the frequency of epileptiform activity, whereas a non-effective dose of ACEA (2.5 µg) did not change it. Effective doses of AM-251 (0.25, 0.5 µg) reversed the ghrelin's anticonvulsant activity. The application of non-effective doses of ACEA (2.5 µg) together with ghrelin (0.5 µg) within 10 minutes caused anticonvulsant activity, which was reversed by the administration of AM-251 (0.25 µg). The electrophysiological evidence from this study suggests a possible interaction between ghrelin and cannabinoid CB1 receptors in the experimental model of epilepsy.

    Topics: Animals; Anticonvulsants; Arachidonic Acids; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Cerebral Cortex; Disease Models, Animal; Electroencephalography; Epilepsy; Ghrelin; Infusions, Intraventricular; Male; Penicillins; Piperidines; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1

2014
The effect of co-administration of the NMDA blocker with agonist and antagonist of CB1-receptor on penicillin-induced epileptiform activity in rats.
    Epilepsy research, 2011, Volume: 93, Issue:2-3

    Although the activation of CB1-receptor by cannabinoids and block of NMDA receptors are known to decrease seizure severity in epilepsy models, the interaction between these systems remain elusive. Therefore, the present study was initiated to evaluate the possible interactions between cannabinoid compounds and NMDA receptor antagonist in the penicillin-induced epileptiform activity in rat. In the first set of experiments, 30 min after intracortical injection of penicillin, five different doses of memantine (3,5-dimethyl-1-adamantanamine hydrochloride, 1, 2.5, 5, 10 or 20mg/kg) were administered intraperitoneally (i.p.). In the second set of experiments, intracerebroventricular (i.c.v.) AM-251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide], (0.25 μg) a CB1-receptor antagonist and ACEA (arachidonyl-2-chloroethylamide), (7.5 μg) a CB1-receptor agonist, were administered 15 min after memantine (i.p.) application. Memantine, NMDA receptor antagonist, at doses of 2.5 and 5mg/kg (i.p.) decreased the mean frequency of penicillin-induced epileptiform activity with a maximal effect at 5mg/kg. Memantine, at the lowest dose (1mg/kg, i.p.) and highest doses (10 and 20mg/kg, i.p.) did not change the frequency of epileptiform activity. ACEA, at a dose of 7.5 μg, also decreased the frequency of epileptiform activity, whereas AM-251, at a dose of 0.25 μg increased the frequency by causing status epilepticus-like activity. The best and earlier anti-epileptiform effects appeared in both the presence of memantine (5mg/kg, i.p.) and ACEA (7.5 μg, i.c.v.), which was blocked by CB1-receptor antagonist, AM-251. The results of the present study provide electrophysiologic evidence for an interaction between cannabinoid system and NMDA receptors, probably via NMDA-mediated Ca(2+) influx in the penicillin-induced epilepsy.

    Topics: Animals; Arachidonic Acids; Data Interpretation, Statistical; Dose-Response Relationship, Drug; Drug Interactions; Electroencephalography; Epilepsy; Excitatory Amino Acid Antagonists; Male; Memantine; Penicillins; Piperidines; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptors, N-Methyl-D-Aspartate

2011
The effects of intracerebroventricular AM-251, a CB1-receptor antagonist, and ACEA, a CB1-receptor agonist, on penicillin-induced epileptiform activity in rats.
    Epilepsia, 2009, Volume: 50, Issue:7

    Several results support the conclusion that the cannabinoid system has a role in generation and cessation of epileptic seizures. The aim of this study was to evaluate the effects of intracerebroventricular AM-251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide], a CB1-receptor antagonist, and ACEA (arachidonyl-2-chloroethylamide), a CB1-receptor agonist, on penicillin-induced epileptiform activity in rats.. In the first set of experiments, 30 min after penicillin injection, AM-251, at doses of 0.125, 0.25, 0.5, and 1 μg, was administered intracerebroventricularly (i.c.v.). In the second set of experiments, 30 min after penicillin injection, ACEA, at doses of 2.5, 5, 7.5, and 15 μg (i.c.v.), was administered. In the third set of experiments, AM-251, at doses of 0.125 and 0.25 μg (i.c.v.), was administered 10 min before ACEA (7.5 μg, i.c.v.) injection.. ACEA, at a dose of 7.5 μg, significantly decreased the frequency of penicillin-induced epileptiform activity without changing the amplitude. ACEA, at doses of 2.5, 5, and 15 μg, had no impact on either frequency or amplitude of epileptiform activity. AM-251, at doses of 0.25 and 0.50 μg, significantly increased the frequency of epileptiform activity. AM-251, at a dose of 0.25 μg (i.c.v.), was the most effective in changing the frequency of penicillin-induced epileptiform activity, and it also caused status epilepticus-like activity. AM-251, at doses of 0.125 and 0.25 μg, 10 min before ACEA (7.5 μg), reversed the anticonvulsant action of ACEA.. The results of the present study provide electrophysiologic evidence for the role of CB1 receptors in regulating the frequency of epileptiform activity in the model of penicillin-induced epilepsy. To elucidate the precise mechanism of cannabinoid action in the brain during seizure, more advanced electrophysiologic and neurochemical studies are required.

    Topics: Animals; Anticonvulsants; Arachidonic Acids; Brain; Cannabinoids; Cerebral Cortex; Disease Models, Animal; Dose-Response Relationship, Drug; Electroencephalography; Epilepsy; Injections, Intraventricular; Male; Penicillins; Piperidines; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Seizures

2009