arachidonyl-2-chloroethylamide has been researched along with Brain-Ischemia* in 5 studies
5 other study(ies) available for arachidonyl-2-chloroethylamide and Brain-Ischemia
Article | Year |
---|---|
Inhibition of mitochondrial permeability transition pore opening contributes to cannabinoid type 1 receptor agonist ACEA-induced neuroprotection.
Cannabinoid type 1 (CB1) receptor agonist arachidonyl-2-chloroethylamide (ACEA) induces neuroprotection against brain ischemia, and the mechanism, however, is still elusive. In this study, we used bilateral common carotid artery occlusion (BCCAO) in mice and oxygen-glucose deprivation (OGD) in primary cultured neurons to mimic brain ischemic injury, and hypothesized that cannabinoid CB1 receptor agonist ACEA protects ischemic neurons via inhibiting the opening of mitochondrial permeability transition pore (MPTP). In vivo, we found that BCCAO treatment reduced the neurological functions, increased the number of apoptotic neuronal cells and deteriorated the mitochondrial morphology in the ischemic brain tissue. And in vitro, we observed that OGD injury reduced cell viability, mitochondrial function and anti-oxidant SOD2 expression, increased lactate dehydrogenase (LDH), mitochondrial cytochrome C (Cyto C) and apoptosis-inducing factor (AIF) releases, elevated the cell apoptosis and mitochondrial superoxide level. And the CB1 receptor agonist ACEA significantly abolished the BCCAO and OGD-induced neuronal injury above. However, the MPTP opener atractyloside (Atr) markedly reversed the ACEA-induced neuroprotective effects, inhibited the mitochondrial Cyto C and AIF releases and relieved the mitochondrial swelling, but the MPTP inhibitor cyclosporin A (CsA) did not cause significant effects on the ACEA-induced neuroprotection above. These findings indicated that inhibition of MPTP opening may be involved in the cannabinoid CB1 receptor agonist ACEA-induced neuroprotection. Topics: Animals; Apoptosis; Apoptosis Inducing Factor; Arachidonic Acids; Atractyloside; Brain Ischemia; Cell Survival; Cyclosporine; Cytochromes c; L-Lactate Dehydrogenase; Male; Mice; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Neuroprotective Agents; Primary Cell Culture; Superoxide Dismutase; Superoxides | 2018 |
Arachidonyl-2-Chloroethylamide Alleviates Cerebral Ischemia Injury Through Glycogen Synthase Kinase-3β-Mediated Mitochondrial Biogenesis and Functional Improvement.
Arachidonyl-2-chloroethylamide (ACEA), a highly selective agonist of cannabinoid receptor 1 (CB1R), has been reported to protect neurons in ischemic injury. We sought to investigate whether mitochondrial biogenesis was involved in the therapeutic effect of ACEA in cerebral ischemia. Focal cerebral ischemic injury was induced in adult male Sprague Dawley rats. Intraperitoneal injection of 1 mg/kg ACEA improved neurological behavior, reduced infarct volume, and inhibited apoptosis. The volume and numbers of mitochondria were significantly increased after ACEA administration. Expression of mitochondrial transcription factor A (Tfam), nuclear transcription factor-1 (Nrf-1), and cytochrome C oxidase subunit IV (COX IV) were also significantly up-regulated in animals administered ACEA. One thousand nanomoles of ACEA inhibited mitochondrial dysfunction in primary rat cortical neurons exposed to oxygen-glucose deprivation (OGD). Furthermore, ACEA administration increased phosphorylation of glycogen synthase kinase-3β (GSK-3β) after reperfusion. Phosphorylation of GSK-3β induced mitochondrial biogenesis and preserved mitochondrial function whereas inhibition of phosphatidylinositol 3-kinase (PI3K) dampened phosphorylation of GSK-3β and reversed induction of mitochondrial biogenesis and function following ACEA administration. In conclusion, ACEA could induce mitochondrial biogenesis and improve mitochondrial function at the beginning of cerebral ischemia, thus alleviating cerebral ischemia injury. Phosphorylation of GSK-3β might be involved in the regulation of mitochondrial biogenesis induced by ACEA. Topics: Animals; Arachidonic Acids; Brain Ischemia; Glycogen Synthase Kinase 3 beta; Male; Mitochondria; Organelle Biogenesis; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1 | 2017 |
Cannabinoid receptor type 1 agonist ACEA improves motor recovery and protects neurons in ischemic stroke in mice.
Brain ischemia produces neuronal cell death and the recruitment of pro-inflammatory cells. In turn, the search for neuroprotection against this type of insult has rendered results involving a beneficial role of endocannabinoid receptor agonists in the Central Nervous System. In this work, to further elucidate the mechanisms associated to this neuroprotective effect, focal brain ischemia was generated by middle cerebral artery occlusion (MCAo) in C57Bl/6 mice. Three, 24 and 48 h after MCAo, animals received CB1R agonist ACEA (1 mg/kg), CB1R antagonist AM251 (1 mg/kg) or vehicle. To assess motor activity, neural deficit scores and motor tests were performed 1 day before and 3, 7, 14, 21, and 28 days after MCAo. At 7 and 28 days post lesion, cytoskeleton structure, astroglial and microglial reaction, and alterations in synapsis were studied in the cerebral cortex. ACEA treatment reduced astrocytic reaction, neuronal death, and dendritic loss. In contrast, AM251 treatment increased these parameters. Motor tests showed a progressive deterioration in motor activity in ischemic animals, which only ACEA treatment was able to counteract. Our results suggest that CB1R may be involved in neuronal survival and in the regulation of neuroprotection during focal cerebral ischemia in mice. Topics: Animals; Arachidonic Acids; Brain Ischemia; Male; Mice; Mice, Inbred C57BL; Motor Skills; Neurons; Neuroprotective Agents; Receptor, Cannabinoid, CB1; Recovery of Function; Stroke | 2015 |
CB1 receptors and post-ischemic brain damage: studies on the toxic and neuroprotective effects of cannabinoids in rat organotypic hippocampal slices.
Cannabinoids (CBs) are implicated in a number of physiological and pathological mechanisms in the central nervous system, but their exact role in post-ischemic brain injury is unclear. The toxic and neuroprotective effects of synthetic and endogenous CBs were evaluated in rat organotypic hippocampal slices exposed to 20 min oxygen-glucose deprivation (OGD) and in gerbils subjected to bilateral carotid occlusion for 5 min. When present in the incubation medium, the synthetic CB agonists WIN 55212-2 and CP 55940 (1-30 μM) and the CB1 agonist ACEA exacerbated CA1 injury induced by OGD, whereas the CB1 receptor antagonists AM 251 and LY 320135 were neuroprotective with maximal activity at 1 μM. AM 251 (at 3 mg/kg, i.p.) also attenuated CA1 pyramidal cell death in gerbils in vivo. The endocannabinoid 2-arachidonoylglycerol (2-AG) reduced OGD injury in hippocampal slices at 0.1-1 μM, whereas anandamide (AEA) was neurotoxic at the same concentrations. The effects of WIN 55212-2, AEA and 2-AG in slices were all dependent on the activation of CB1 but not CB2 receptors, except for the toxic effects of AEA that were also dependent on vanilloid TRPV1 receptors. Our results suggest that exogenous administration of CB1 agonists and the production of endocannabinoids "on demand" may produce different, if not opposite, effects on the fate of neurons following cerebral ischemia. Topics: Analysis of Variance; Animals; Arachidonic Acids; Benzoxazines; Brain Ischemia; Cannabinoids; Cyclohexanols; Gerbillinae; Glucose; Hippocampus; Hypoxia; Morpholines; Naphthalenes; Neurons; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2011 |
Characterization of the neuroprotective effect of the cannabinoid agonist WIN-55212 in an in vitro model of hypoxic-ischemic brain damage in newborn rats.
Brain slices from 7-d-old Wistar rats were exposed to oxygen-glucose deprivation (OGD) for 30 min. OGD slices were incubated with vehicle or with the CB1/CB2 cannabinoid agonist WIN55212 (50 microM), the CB1 agonist arachidonyl-2-chloroethylamide (ACEA) (50 microM), or the CB2 agonist JW133 (50 microM), alone or combined with the CB1 and CB2 receptor antagonist SR 141716 (50 microM) or SR 144528 (50 microM), respectively. Neuronal damage was assessed by histologic analysis and spectrophotometric determination of lactate dehydrogenase (LDH) efflux into the incubation medium. Additionally, medium glutamate levels were determined by high-performance liquid chromatography (HPLC) and those of tumor necrosis factor alpha (TNF-alpha) by enzyme-linked immunosorbent assay. Finally, inducible nitric oxide synthase (iNOS) and CB1/CB2 receptor expression were determined in slices homogenate by Western blot. Both CB1 and CB2 receptors were expressed in slices. OGD increased CB1 expression, cellular damage, LDH efflux, glutamate and TNF-alpha release, and inducible nitric oxide synthase (iNOS) expression; WIN55212 inhibited all these actions. SR141716 and SR144528 inhibited the effect of R(+)-WIN-55212-2 (WIN), as well as the reduction of LDH efflux by ACEA and JW133, respectively. In conclusion, WIN55212 afforded robust neuroprotection in the forebrain slices exposed to OGD, by acting on glutamatergic excitotoxicity, TNF-alpha release, and iNOS expression; this neuroprotective effect seemed to be mediated by CB1 and CB2 receptors. Topics: Anaerobiosis; Animals; Animals, Newborn; Arachidonic Acids; Benzoxazines; Brain; Brain Chemistry; Brain Ischemia; Cannabinoid Receptor Agonists; Cannabinoids; Disease Models, Animal; Hypoxia, Brain; L-Lactate Dehydrogenase; Morpholines; Naphthalenes; Neuroprotective Agents; Nitric Oxide Synthase Type II; Piperidines; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Tumor Necrosis Factor-alpha | 2006 |