arachidonic-acid-omega-9-hydroperoxide has been researched along with Inflammation* in 6 studies
1 review(s) available for arachidonic-acid-omega-9-hydroperoxide and Inflammation
Article | Year |
---|---|
Pathophysiology of the hepoxilins.
There is increasing evidence from various scientific groups that hepoxilins represent novel inflammatory mediators. In vitro studies have shown that the hepoxilins cause mobilization of intracellular calcium in human neutrophils, cause plasma leakage, and potently stimulate chemotaxis of human neutrophils. In vivo, the hepoxilin pathway is activated in conditions of inflammation, e.g. after pathogen infection, in inflamed conditions (psoriasis, arthritis), and hepoxilins promote inflammatory hyperalgesia and allodynia. Although much work has demonstrated an effect of hepoxilins on neutrophils, the hepoxilin pathway has been demonstrated in a variety of tissues, including the lung, brain, pituitary, pancreatic islets, skin, etc. A genetic defect linked to a deficiency in hepoxilin formation has been described and believed to be responsible for the scaly skin observed in ichthyosis. Despite their biological and chemical instability, the involvement of the hepoxilin pathway in pathology has been demonstrated in vitro and in vivo through either isolation of the hepoxilins themselves (or their metabolites) or implied through the use of stable hepoxilin analogs. These analogs have additionally shown efficacy in animal models of lung fibrosis, cancer, thrombosis and diabetes. Research on these compounds has merely scratched the surface, but results published to date have suggested that the hepoxilin pathway is a distinct and novel pathway leading to inflammation and hepoxilin antagonists may provide the means of controlling early aspects of the acute inflammatory phase. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance". Topics: 8,11,14-Eicosatrienoic Acid; Animals; Anti-Inflammatory Agents; Antineoplastic Agents; Drug Design; Humans; Inflammation; Inflammation Mediators; Leukotrienes; Molecular Structure; Molecular Targeted Therapy; Neoplasms; Signal Transduction; Structure-Activity Relationship | 2015 |
5 other study(ies) available for arachidonic-acid-omega-9-hydroperoxide and Inflammation
Article | Year |
---|---|
12/15-lipoxygenase products induce inflammation and impair insulin signaling in 3T3-L1 adipocytes.
Inflammation and insulin resistance associated with visceral obesity are important risk factors for the development of type 2 diabetes, atherosclerosis, and the metabolic syndrome. The 12/15-lipoxygenase (12/15-LO) enzyme has been linked to inflammatory changes in blood vessels that precede the development of atherosclerosis. The expression and role of 12/15-LO in adipocytes have not been evaluated. We found that 12/15-LO mRNA was dramatically upregulated in white epididymal adipocytes of high-fat fed mice. 12/15-LO was poorly expressed in 3T3-L1 fibroblasts and was upregulated during differentiation into adipocytes. Interestingly, the saturated fatty acid palmitate, a major component of high fat diets, augmented expression of 12/15-LO in vitro. When 3T3-L1 adipocytes were treated with the 12/15-LO products, 12-hydroxyeicosatetranoic acid (12(S)-HETE) and 12-hydroperoxyeicosatetraenoic acid (12(S)-HPETE), expression of proinflammatory cytokine genes, including tumor necrosis factor-alpha (TNF-alpha), monocyte chemoattractant protein 1 (MCP-1), interleukin 6 (IL-6), and IL-12p40, was upregulated whereas anti-inflammatory adiponectin gene expression was downregulated. 12/15-LO products also augmented c-Jun N-terminal kinase 1 (JNK-1) phosphorylation, a known negative regulator of insulin signaling. Consistent with impaired insulin signaling, we found that insulin-stimulated 3T3-L1 adipocytes exhibited decreased IRS-1(Tyr) phosphorylation, increased IRS-1(Ser) phosphorylation, and impaired Akt phosphorylation when treated with 12/15-LO product. Taken together, our data suggest that 12/15-LO products create a proinflammatory state and impair insulin signaling in 3T3-L1 adipocytes. Because 12/15-LO expression is upregulated in visceral adipocytes by high-fat feeding in vivo and also by addition of palmitic acid in vitro, we propose that 12/15-LO plays a role in promoting inflammation and insulin resistance associated with obesity. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; 3T3-L1 Cells; Adipocytes; Adiponectin; Animals; Arachidonate 12-Lipoxygenase; Arachidonate 15-Lipoxygenase; Cell Differentiation; Cytokines; Disease Models, Animal; Gene Expression Regulation, Enzymologic; Inflammation; Inflammation Mediators; Insulin; Insulin Receptor Substrate Proteins; Insulin Resistance; Leukotrienes; Male; Mice; Mice, Inbred C57BL; Mitogen-Activated Protein Kinase 8; Obesity; Palmitic Acid; Phosphorylation; Proto-Oncogene Proteins c-akt; RNA, Messenger; Signal Transduction; Time Factors; Up-Regulation | 2009 |
Platelet 12-lipoxygenase activation via glycoprotein VI: involvement of multiple signaling pathways in agonist control of H(P)ETE synthesis.
Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero)xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H(P)ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 microg/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI (GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)-containing FcRgamma chain. Conversely, thrombin only activated at high concentrations (> 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H(P)ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2+ mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H(P)ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P)ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature. Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Adenosine Diphosphate; Amino Acid Motifs; Arachidonate 12-Lipoxygenase; Arachidonic Acid; Blood Platelets; Calcimycin; Calcium Signaling; Carrier Proteins; Collagen; Cyclooxygenase 1; Egtazic Acid; Enzyme Activation; Enzyme Inhibitors; Humans; Inflammation; Isoenzymes; Leukotrienes; Membrane Proteins; p38 Mitogen-Activated Protein Kinases; Peptides; Phosphorylation; Platelet Activation; Platelet Endothelial Cell Adhesion Molecule-1; Platelet Membrane Glycoproteins; Prostaglandin-Endoperoxide Synthases; Protein Kinase C; Protein Processing, Post-Translational; Protein Transport; Quinolines; Receptors, IgG; Thrombin | 2004 |
Amplification mechanisms of inflammation: paracrine stimulation of arachidonic acid mobilization by secreted phospholipase A2 is regulated by cytosolic phospholipase A2-derived hydroperoxyeicosatetraenoic acid.
In macrophages and other major immunoinflammatory cells, two phospholipase A(2) (PLA(2)) enzymes act in concert to mobilize arachidonic acid (AA) for immediate PG synthesis, namely group IV cytosolic phospholipase A(2) (cPLA(2)) and a secreted phospholipase A(2) (sPLA(2)). In this study, the molecular mechanism underlying cross-talk between the two PLA(2)s during paracrine signaling has been investigated. U937 macrophage-like cells respond to Con A by releasing AA in a cPLA(2)-dependent manner, and addition of exogenous group V sPLA(2) to the activated cells increases the release. This sPLA(2) effect is abolished if the cells are pretreated with cPLA(2) inhibitors, but is restored by adding exogenous free AA. Inhibitors of cyclooxygenase and 5-lipoxygenase have no effect on the response to sPLA(2). In contrast, ebselen strongly blocks it. Reconstitution experiments conducted in pyrrophenone-treated cells to abolish cPLA(2) activity reveal that 12- and 15-hydroperoxyeicosatetraenoic acid (HPETE) are able to restore the sPLA(2) response to levels found in cells displaying normal cPLA(2) activity. Moreover, 12- and 15-HPETE are able to enhance sPLA(2) activity in vitro, using a natural membrane assay. Neither of these effects is mimicked by 12- or 15-hydroxyeicosatetraenoic acid, indicating that the hydroperoxy group of HPETE is responsible for its biological activity. Collectively, these results establish a role for 12/15-HPETE as an endogenous activator of sPLA(2)-mediated phospholipolysis during paracrine stimulation of macrophages and identify the mechanism that connects sPLA(2) with cPLA(2) for a full AA mobilization response. Topics: Arachidonic Acid; Concanavalin A; Cytosol; Enzyme Activation; Group V Phospholipases A2; Humans; Hydroxyeicosatetraenoic Acids; Inflammation; Leukotrienes; Lipid Peroxides; Macrophage Activation; Macrophages; Paracrine Communication; Phospholipases A; Phospholipases A2; U937 Cells; Up-Regulation | 2003 |
Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia.
The capsaicin-sensitive vanilloid receptor (VR1) was recently shown to play an important role in inflammatory pain (hyperalgesia), but the underlying mechanism is unknown. We hypothesized that pain-producing inflammatory mediators activate capsaicin receptors by inducing the production of fatty acid agonists of VR1. This study demonstrates that bradykinin, acting at B2 bradykinin receptors, excites sensory nerve endings by activating capsaicin receptors via production of 12-lipoxygenase metabolites of arachidonic acid. This finding identifies a mechanism that might be targeted in the development of new therapeutic strategies for the treatment of inflammatory pain. Topics: Animals; Animals, Newborn; Arachidonate 12-Lipoxygenase; Bradykinin; Cell Line; Cells, Cultured; Diterpenes; Ganglia, Spinal; Humans; Hyperalgesia; Inflammation; Leukotrienes; Neurons; Neurons, Afferent; Neurotoxins; Pain; Rats; Receptors, Bradykinin; Receptors, Drug; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Transfection | 2002 |
Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances.
Capsaicin, a pungent ingredient of hot peppers, causes excitation of small sensory neurons, and thereby produces severe pain. A nonselective cation channel activated by capsaicin has been identified in sensory neurons and a cDNA encoding the channel has been cloned recently. However, an endogenous activator of the receptor has not yet been found. In this study, we show that several products of lipoxygenases directly activate the capsaicin-activated channel in isolated membrane patches of sensory neurons. Among them, 12- and 15-(S)-hydroperoxyeicosatetraenoic acids, 5- and 15-(S)-hydroxyeicosatetraenoic acids, and leukotriene B(4) possessed the highest potency. The eicosanoids also activated the cloned capsaicin receptor (VR1) expressed in HEK cells. Prostaglandins and unsaturated fatty acids failed to activate the channel. These results suggest a novel signaling mechanism underlying the pain sensory transduction. Topics: Animals; Capsaicin; Cell Line; Cells, Cultured; Dinoprostone; Eicosanoids; Ganglia, Spinal; Humans; Hydroxyeicosatetraenoic Acids; Inflammation; Ion Channel Gating; Leukotriene B4; Leukotrienes; Ligands; Lipid Peroxides; Lipoxygenase; Molecular Structure; Neurons, Afferent; Prostaglandin D2; Prostaglandin H2; Prostaglandins H; Rats; Receptors, Drug; Structure-Activity Relationship | 2000 |