aq4n and Disease-Models--Animal

aq4n has been researched along with Disease-Models--Animal* in 4 studies

Other Studies

4 other study(ies) available for aq4n and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Smart Cu(II)-aptamer complexes based gold nanoplatform for tumor micro-environment triggered programmable intracellular prodrug release, photodynamic treatment and aggregation induced photothermal therapy of hepatocellular carcinoma.
    Theranostics, 2017, Volume: 7, Issue:1

    Topics: Animals; Anthraquinones; Antineoplastic Agents; Aptamers, Nucleotide; Carcinoma, Hepatocellular; Copper; Disease Models, Animal; Drug Carriers; Gold; Hep G2 Cells; Heterografts; Humans; Hyperthermia, Induced; Hypoxia; Mice, Inbred BALB C; Mice, Nude; Nanoparticles; Photochemotherapy; Prodrugs; Treatment Outcome

2017
Selective tumor targeting by the hypoxia-activated prodrug AQ4N blocks tumor growth and metastasis in preclinical models of pancreatic cancer.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2007, Apr-01, Volume: 13, Issue:7

    The antitumor activities and pharmacokinetics of the hypoxia-activated cytotoxin AQ4N and its metabolites were assessed in several preclinical models of pancreatic cancers.. The cytotoxic effects of AQ4N prodrug and its bioreduced form, AQ4, were tested against multiple human tumor cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Nude mice bearing s.c. or orthotopically implanted human BxPC-3 or Panc-1 tumor cells were treated with AQ4N. Tumor growth inhibition, time to progression/end point, and liver metastasis were evaluated in treatment versus control groups. Plasma and tumor levels of AQ4N and its metabolites were quantitated by liquid chromatography-tandem mass spectrometry.. In contrast to AQ4N, the bioreduced AQ4 metabolite displayed potent cytotoxicity in many human tumor lines, including those derived from human pancreatic adenocarcinomas. Single-agent administration of AQ4N significantly delayed tumor growth, progression, and survival in a manner comparable with gemcitabine in multiple pancreatic tumor models in vivo. Survival increases were accompanied by a reduction in incidence and spread of liver metastasis. Quantitation of AQ4N and its metabolites in tumor-bearing mice showed that the prodrug is rapidly cleared from the circulation by 24 h and neither of the bioreduced metabolites was detected in plasma. In contrast, AQ4N readily penetrated BxPC-3 tumors and the cytotoxic AQ4 metabolite rapidly accumulated in tumor tissues at high levels in a dose-dependent fashion.. AQ4N undergoes rapid and selective conversion into the potent antineoplastic metabolite AQ4 in tumors in vivo and provides proof of principle for the use of hypoxia-activated prodrugs in the treatment against pancreatic cancers.

    Topics: Animals; Anthraquinones; Antineoplastic Agents; Cell Hypoxia; Cell Proliferation; Disease Models, Animal; Drug Delivery Systems; Female; Humans; Mice; Mice, Nude; Neoplasm Metastasis; Pancreatic Neoplasms; Prodrugs

2007
The chemopotentiation of cisplatin by the novel bioreductive drug AQ4N.
    British journal of cancer, 2001, Aug-17, Volume: 85, Issue:4

    AQ4N is a bioreductive drug that can significantly enhance the anti-tumour effect of radiation and cyclophosphamide. The aim of this study was to examine the ability of AQ4N to potentiate the anti-tumour effect of cisplatin and to compare it to the chemopotentiation effect of tirapazamine. In the T50/80 murine tumour model, AQ4N (50-100 mg/kg) was administered 30 min, 2.5 or 6 h prior to cisplatin (4 mg/kg or 8 mg/kg); this produced an anti-tumour effect that was approximately 1.5 to 2 times greater than that achieved by a single 4 or 8 mg/kg dose of cisplatin. Tirapazamine (25 mg/kg) administered 2.5 h prior to cisplatin (4 mg/kg) resulted in a small increase in anti-tumour efficacy. AQ4N was also successful in enhancing the anti-tumour effect of cisplatin in the SCCVII and RIF-1 murine tumour models. This resulted in an increased cell kill of greater than 3 logs in both models; this was a greater cell kill than that observed for tirapazamine with cisplatin. Combination of cisplatin with AQ4N or tirapazamine resulted in no additional bone marrow toxicity compared to cisplatin administered alone. In conclusion, AQ4N has the potential to improve the clinical efficacy of cisplatin.

    Topics: Animals; Anthraquinones; Antineoplastic Agents; Cisplatin; Disease Models, Animal; Drug Interactions; Drug Screening Assays, Antitumor; Female; Mammary Neoplasms, Animal; Mice; Prodrugs; Tirapazamine; Triazines

2001