apyrase has been researched along with Triple-Negative-Breast-Neoplasms* in 2 studies
2 other study(ies) available for apyrase and Triple-Negative-Breast-Neoplasms
Article | Year |
---|---|
Is the regulation by miRNAs of NTPDase1 and ecto-5'-nucleotidase genes involved with the different profiles of breast cancer subtypes?
Breast cancer (BC) is a public health problem worldwide, causing suffering and premature death among women. As a heterogeneous disease, BC-specific diagnosis and treatment are challenging. Ectonucleotidases are related to tumor development and their expression may vary among BC. miRNAs may participate in epigenetic events and may regulate ectonucleotidases in BC. This study aimed to evaluate the expression of ectonucleotidases according to BC subtypes and to predict if there is post-transcriptional regulation of them by miRNAs. MCF 10A (non-tumorigenic), MCF7 (luminal BC), and MDA-MB-231 (triple-negative BC - TNBC) breast cell lines were used and ENTPD1 (the gene encoding for NTPDase1) and NT5E (the gene encoding for ecto-5'-nucleotidase) gene expression was determined. Interestingly, the expression of ENTPD1 was only observed in MCF7 and NT5E was lower in MCF7 compared to MDA-MB-231 cell line. ATP, ADP, and AMP hydrolysis were observed on the surface of all cell lines, being higher in MDA-MB-231. Like qPCR, the activity of AMP hydrolysis was also lower in the MCF7 cells, which may represent a striking feature of this BC subtype. In silico analyses confirmed that the miRNAs miR-101-3p, miR-141-3p, and miR-340-5p were higher expressed in MCF7 cells and targeted NT5E mRNA. Altogether, data suggest that the regulation of NT5E by miRNAs in MCF7 lineage may direct the molecular profile of luminal BC. Thus, we suggest that the roles of ecto-5'-nucleotidase and the aforementioned miRNAs must be unraveled in TNBC to be possibly defined as diagnostic and therapeutic targets. Topics: 5'-Nucleotidase; Antigens, CD; Apyrase; Breast Neoplasms; Cell Line, Tumor; Female; Gene Expression Regulation, Neoplastic; Humans; MicroRNAs; Triple Negative Breast Neoplasms | 2022 |
Overexpression of PD-1 and CD39 in tumor-infiltrating lymphocytes compared with peripheral blood lymphocytes in triple-negative breast cancer.
Growing evidence highlighted the primary role of the immune system in the disease course of triple-negative breast cancer (TNBC). The study aim was to investigate the expression of PD-1 and CD39 on CD4+ and CD8+ cells infiltrating tumor tissue compared to their counterparts in peripheral blood and explore its association with tumor characteristics, disease progression, and prognosis in females with TNBC.. The study included 30 TNBC patients and 20 healthy controls. Cancer and normal breast tissue and peripheral blood samples were collected for evaluation of the expression of PD-1 and CD39 on CD4+ and CD8+T cells by flow cytometry.. A marked reduction in the percentage of CD8+ T lymphocytes and a significant increase in the frequencies of CD4+ T lymphocytes and CD4+ and CD8+ T lymphocytes expressing PD1 and CD39 were evident in tumor tissue in comparison with the normal breast tissue. The DFS was inversely related to the cancer tissue PD1+CD8+ and CD39+CD8+ T lymphocytes. Almost all studied cells were significantly increased in the tumor tissue than in peripheral blood. Positive correlations were detected among peripheral PD1+CD4+T lymphocytes and each of cancer tissue PD1+CD4+, PD1+CD8+and CD39+CD8+T cells, and among peripheral and cancer tissue CD39+CD4+and CD39+CD8+ T cells.. The CD39 and PD1 inhibitory pathways are synergistically utilized by TNBC cells to evade host immune response causing poor survival. Hence, combinational immunotherapy blocking these pathways might be a promising treatment strategy in this type of cancer. Topics: Adult; Aged; Antigens, CD; Apyrase; Biomarkers, Tumor; Disease Progression; Female; Humans; Lymphocytes; Lymphocytes, Tumor-Infiltrating; Middle Aged; Prognosis; Programmed Cell Death 1 Receptor; Survival Rate; Triple Negative Breast Neoplasms | 2022 |