apyrase and Reperfusion-Injury

apyrase has been researched along with Reperfusion-Injury* in 24 studies

Reviews

5 review(s) available for apyrase and Reperfusion-Injury

ArticleYear
Burnstock oration - purinergic signalling in kidney transplantation.
    Purinergic signalling, 2022, Volume: 18, Issue:4

    Kidney transplantation is the preferred treatment for individuals with kidney failure offering improved quality and quantity of life. Despite significant advancements in short term graft survival, longer term survival rates have not improved greatly mediated in large by chronic antibody mediated rejection. Strategies to reduce the donor kidney antigenic load may translate to improved transplant survival. CD39 on the vascular endothelium and on circulating cells, in particular regulatory T cells (Treg), is upregulated in response to hypoxic stimuli and plays a critical role in regulating the immune response removing proinflammatory ATP and generating anti-inflammatory adenosine. Herein, the role of CD39 in reducing ischaemia-reperfusion injury (IRI) and on Treg within the context of kidney transplantation is reviewed.

    Topics: Adenosine; Antigens, CD; Apyrase; Graft Survival; Humans; Kidney; Kidney Transplantation; Reperfusion Injury; Signal Transduction

2022
Conversion of extracellular ATP into adenosine: a master switch in renal health and disease.
    Nature reviews. Nephrology, 2020, Volume: 16, Issue:9

    ATP and its ultimate degradation product adenosine are potent extracellular signalling molecules that elicit a variety of pathophysiological functions in the kidney through the activation of P2 and P1 purinergic receptors, respectively. Extracellular purines can modulate immune responses, balancing inflammatory processes and immunosuppression; indeed, alterations in extracellular nucleotide and adenosine signalling determine outcomes of inflammation and healing processes. The functional activities of ectonucleotidases such as CD39 and CD73, which hydrolyse pro-inflammatory ATP to generate immunosuppressive adenosine, are therefore pivotal in acute inflammation. Protracted inflammation may result in aberrant adenosinergic signalling, which serves to sustain inflammasome activation and worsen fibrotic reactions. Alterations in the expression of ectonucleotidases on various immune cells, such as regulatory T cells and macrophages, as well as components of the renal vasculature, control purinergic receptor-mediated effects on target tissues within the kidney. The role of CD39 as a rheostat that can have an impact on purinergic signalling in both acute and chronic inflammation is increasingly supported by the literature, as detailed in this Review. Better understanding of these purinergic processes and development of novel drugs targeting these pathways could lead to effective therapies for the management of acute and chronic kidney disease.

    Topics: 5'-Nucleotidase; Acute Kidney Injury; Adenosine; Adenosine Triphosphate; Animals; Antigens, CD; Apyrase; Carcinoma, Renal Cell; Diabetic Nephropathies; Graft Rejection; Humans; Immune Tolerance; Inflammation; Kidney Diseases; Kidney Neoplasms; Kidney Transplantation; Macrophages; Polycystic Kidney Diseases; Receptors, Purinergic P1; Receptors, Purinergic P2; Renal Insufficiency, Chronic; Reperfusion Injury; Signal Transduction; T-Lymphocytes, Regulatory

2020
Ectonucleotidases in Intestinal and Hepatic Inflammation.
    Frontiers in immunology, 2019, Volume: 10

    Purinergic signaling modulates systemic and local inflammatory responses. Extracellular nucleotides, including eATP, promote inflammation, at least in part via the inflammasome upon engagement of P2 purinergic receptors. In contrast, adenosine generated during eATP phosphohydrolysis by ectonucleotidases, triggers immunosuppressive/anti-inflammatory pathways. Mounting evidence supports the role of ectonucleotidases, especially ENTPD1/CD39 and CD73, in the control of several inflammatory conditions, ranging from infectious disease, organ fibrosis to oncogenesis. Our experimental data generated over the years have indicated both CD39 and CD73 serve as pivotal regulators of intestinal and hepatic inflammation. In this context, immune cell responses are regulated by the balance between eATP and adenosine, potentially impacting disease outcomes as in gastrointestinal infection, inflammatory bowel disease, ischemia reperfusion injury of the bowel and liver, autoimmune or viral hepatitis and other inflammatory conditions, such as cancer. In this review, we report the most recent discoveries on the role of ENTPD1/CD39, CD73, and other ectonucleotidases in the regulation of intestinal and hepatic inflammation. We discuss the present knowledge, highlight the most intriguing and promising experimental data and comment on important aspects that still need to be addressed to develop purinergic-based therapies for these important illnesses.

    Topics: 5'-Nucleotidase; Adenosine Triphosphate; Animals; Apyrase; GPI-Linked Proteins; Hepatitis, Autoimmune; Hepatitis, Viral, Human; Humans; Inflammatory Bowel Diseases; Intestines; Liver; Receptors, Purinergic P2; Reperfusion Injury; Signal Transduction

2019
The CD39-adenosinergic axis in the pathogenesis of renal ischemia-reperfusion injury.
    Purinergic signalling, 2013, Volume: 9, Issue:2

    Hypoxic injury occurs when the blood supply to an organ is interrupted; subsequent reperfusion halts ongoing ischemic damage but paradoxically leads to further inflammation. Together this is termed ischemia-reperfusion injury (IRI). IRI is inherent to organ transplantation and impacts both the short- and long-term outcomes of the transplanted organ. Activation of the purinergic signalling pathway is intrinsic to the pathogenesis of, and endogenous response to IRI. Therapies targeting the purinergic pathway in IRI are an attractive avenue for the improvement of transplant outcomes and the basis of ongoing research. This review aims to examine the role of adenosine receptor signalling and the ecto-nucleotidases, CD39 and CD73, in IRI, with a particular focus on renal IRI.

    Topics: Adenosine; Animals; Antigens, CD; Apyrase; Humans; Kidney; Kidney Transplantation; Reperfusion Injury; Signal Transduction

2013
Ectonucleotidases of CD39 family modulate vascular inflammation and thrombosis in transplantation.
    Seminars in thrombosis and hemostasis, 2005, Volume: 31, Issue:2

    Transplantation results in exposure of the graft vasculature to warm and cold ischemia, followed by perfusion by circulating blood constituents and obligatory oxidant stress. Further graft injury occurs as consequences of acute humoral cellular rejection or chronic transplant vasculopathy, or both. Extracellular nucleotide stimulation of purinergic type 2 (P2) receptors are key components of platelet, endothelial cell (EC), and leukocyte activation resulting in vascular thrombosis and inflammation in vivo. CD39, the prototype nucleoside triphosphate diphosphohydrolase (NTPDase-1) is highly expressed on endothelium; in contrast, CD39L1/NTPDase-2 (a preferential adenosine triphosphatase [ATPase]) is found on vascular adventitial cells. Both ectoenzymes influence thrombogenesis by the regulated hydrolysis of extracellular nucleotides that differentially regulate P2-receptor activity and function in platelets and vascular cells. The intracytoplasmic domains of NTPDase-1 may also independently influence cellular activation and proliferation. NTPDase activity is substantively lost in the vasculature of injured or rejected grafts. A role for NTPDase-1 in thromboregulation has been validated by generation of mutant mice either null for cd39 or overexpressing human CD39. Administration of soluble NTPDase or induction of CD39 by adenoviral vectors, or both, are also of benefit in several models of transplantation. Administration of soluble CD39 or targeted expression may have future therapeutic application in transplantation-associated and other vascular diseases.

    Topics: Adenosine Triphosphatases; Animals; Antigens, CD; Apyrase; Genetic Therapy; Graft Rejection; Humans; Ischemia; Mice; Mice, Inbred Strains; Mice, Knockout; Postoperative Complications; Rabbits; Rats; Rats, Inbred Lew; Receptors, Purinergic P2; Reperfusion Injury; Swine; Swine, Miniature; Thrombosis; Tissue and Organ Harvesting; Transplantation; Transplantation, Heterologous; Transplantation, Homologous; Vasculitis

2005

Other Studies

19 other study(ies) available for apyrase and Reperfusion-Injury

ArticleYear
Carbon monoxide protects the kidney through the central circadian clock and CD39.
    Proceedings of the National Academy of Sciences of the United States of America, 2018, 03-06, Volume: 115, Issue:10

    Ischemia reperfusion injury (IRI) is the predominant tissue insult associated with organ transplantation. Treatment with carbon monoxide (CO) modulates the innate immune response associated with IRI and accelerates tissue recovery. The mechanism has been primarily descriptive and ascribed to the ability of CO to influence inflammation, cell death, and repair. In a model of bilateral kidney IRI in mice, we elucidate an intricate relationship between CO and purinergic signaling involving increased CD39 ectonucleotidase expression, decreased expression of Adora1, with concomitant increased expression of Adora2a/2b. This response is linked to a >20-fold increase in expression of the circadian rhythm protein Period 2 (Per2) and a fivefold increase in serum erythropoietin (EPO), both of which contribute to abrogation of kidney IRI. CO is ineffective against IRI in

    Topics: Animals; Antigens, CD; Apyrase; Carbon Monoxide; Disease Models, Animal; Humans; Kidney; Kidney Diseases; Male; Mice; Mice, Inbred C57BL; Period Circadian Proteins; Reperfusion Injury

2018
Ferulic Acid Protected from Kidney Ischemia Reperfusion Injury in Mice: Possible Mechanism Through Increasing Adenosine Generation via HIF-1α.
    Inflammation, 2018, Volume: 41, Issue:6

    Ferulic acid (FA), derived from fruits and vegetables, is well-known as a potent antioxidant of scavenging free radicals. However, the role and underlying mechanism of FA on kidney ischemia reperfusion (I/R) injury are limited. Here, we explored the effects of FA on kidney I/R injury. The kidney I/R injury models were carried out by clamping bilateral pedicles for 35 min followed by reperfusion for 24 h. Mice were orally pretreated with different doses of FA for three times 24 h before I/R. The renal function was assessed by serum creatine (Scr) and blood urea nitrogen (BUN). Kidney histology was examined by hematoxylin and eosin (HE) staining and terminal deoxynucleotidly transferased UTP nick-end labeling (TUNEL) assay. Proinflammatory cytokines, caspase-3 activity, adenosine generation, adenosine signaling molecules, and hypoxia inducible factor-1 alpha (HIF-1α) were also detected, respectively. The siHIF-1α adenovirus vectors were in vivo used to inhibit the expression of HIF-1α. The results showed that FA significantly attenuated kidney damage in renal I/R-operated mice as indicated by reducing levels of Scr and BUN, ameliorating renal pathological structural changes, and tubular cells apoptosis. Moreover, FA pretreatment inhibited I/R-induced renal proinflammatory cytokines and neutrophils recruitment. Interestingly, the levels of HIF-α, CD39, and CD73 mRNA and protein as well as adenosine production were all significantly increased after FA pretreatment in the kidney of I/R-performed mice, and inhibiting HIF-α expression using siRNA abolished this protection of FA on I/R-induced acute kidney injury as evidenced by more severe renal damage and reduced adenosine production. Our findings indicated that FA protected against kidney I/R injury by reducing apoptosis, alleviating inflammation, increasing adenosine generation, and upregulating CD39 and CD73 expression, which might be mediated by HIF-1α.

    Topics: 5'-Nucleotidase; Adenosine; Animals; Antigens, CD; Apoptosis; Apyrase; Coumaric Acids; Hypoxia-Inducible Factor 1, alpha Subunit; Inflammation; Kidney; Mice; Protective Agents; Reperfusion Injury

2018
Development of a novel strategy to target CD39 antithrombotic activity to the endothelial-platelet microenvironment in kidney ischemia-reperfusion injury.
    Purinergic signalling, 2017, Volume: 13, Issue:2

    Kidney ischemia-reperfusion injury (IRI) is common during transplantation. IRI is characterised by inflammation and thrombosis and associated with acute and chronic graft dysfunction. P-selectin and its ligand PSGL-1 are cell adhesion molecules that control leukocyte-endothelial and leukocyte-platelet interactions under inflammatory conditions. CD39 is the dominant vascular nucleotidase that facilitates adenosine generation via extracellular ATP/ADP-phosphohydrolysis. Adenosine signalling is protective in renal IRI, but CD39 catalytic activity is lost with exposure to oxidant stress. We designed a P-selectin targeted CD39 molecule (rsol.CD39-PSGL-1) consisting of recombinant soluble CD39 that incorporates 20 residues of PSGL-1 that bind P-selectin. We hypothesised that rsol.CD39-PSGL-1 would maintain endothelial integrity by focusing the ectonucleotidase platelet-inhibitory activity and reducing leukocyte adhesion at the injury site. The rsol.CD39-PSGL-1 displayed ADPase activity and inhibited platelet aggregation ex vivo, as well as bound with high specificity to soluble P-selectin and platelet surface P-selectin. Importantly, mice injected with rsol.CD39-PSGL-1 and subjected to renal IRI showed significantly less kidney damage both biochemically and histologically, compared to those injected with solCD39. Furthermore, the equivalent dose of rsol.CD39-PSGL-1 had no effect on tail template bleeding times. Hence, targeting recombinant CD39 to the injured vessel wall via PSGL-1 binding resulted in substantial preservation of renal function and morphology after IRI without toxicity. These studies indicate potential translational importance to clinical transplantation and nephrology.

    Topics: Animals; Antigens, CD; Apyrase; Blood Platelets; Cellular Microenvironment; Endothelium, Vascular; Fibrinolytic Agents; Humans; Kidney; Membrane Glycoproteins; Mice; Platelet Aggregation; Recombinant Proteins; Reperfusion Injury

2017
The Differential Effect of Apyrase Treatment and hCD39 Overexpression on Chronic Renal Fibrosis After Ischemia-Reperfusion Injury.
    Transplantation, 2017, Volume: 101, Issue:7

    Renal ischemia-reperfusion injury (IRI) leads to acute kidney injury and renal fibrosis. CD39 is a key purinergic enzyme in the hydrolysis of adenosine triphosphate (ATP) and increased CD39 enzymatic activity protects from acute IRI but its effect on renal fibrosis is not known.. Using a mouse model of unilateral renal IRI, the effects of increased CD39 activity (using soluble apyrase and mice expressing human CD39 transgene) on acute and chronic renal outcomes were examined. Nucleotide (ATP, adenosine diphosphate, adenosine monophosphate) and nucleoside (adenosine and inosine) levels were quantified by high-performance liquid chromatography. Soluble apyrase reduced acute renal injury at 24 hours and renal fibrosis at 4 weeks post-IRI, compared with vehicle-treated mice.. Soluble apyrase reduced renal ATP, adenosine diphosphate, and adenosine monophosphate, but not adenosine levels, during ischemia. In comparison with wild-type littermates, hCD39 transgenic mice were protected from acute renal injury at 24 hours, but had increased renal fibrosis at 4 weeks post-IRI. hCD39 transgene expression was localized to the vascular endothelium at baseline and did not affect total renal nucleotide and nucleoside levels during ischemia. However, hCD39 transgene was more widespread at 4 weeks post-IRI and was associated with higher renal adenosine levels at 4 weeks post-IRI compared with wild-type littermates.. A single dose of apyrase administration before IRI protects from both acute and chronic renal injuries and may have clinical application in protection from ischemic-induced renal injury. Furthermore, transgenic expression of hCD39 is associated with increased renal fibrosis after ischemia.

    Topics: Acute Kidney Injury; Adenine Nucleotides; Animals; Antigens, CD; Apyrase; Chronic Disease; Disease Models, Animal; Enzyme Induction; Enzyme Inhibitors; Fibrosis; Genetic Predisposition to Disease; Humans; Hydrolysis; Kidney; Male; Mice, Inbred C57BL; Mice, Transgenic; Phenotype; Receptors, Adrenergic, beta-2; Reperfusion Injury; RNA, Messenger; Time Factors

2017
Human recombinant apyrase therapy protects against canine pulmonary ischemia-reperfusion injury.
    The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation, 2015, Volume: 34, Issue:2

    There is accumulating evidence that extracellular adenosine triphosphate (eATP) promotes many of the underlying mechanisms that exacerbate acute lung injury. However, much of these data are from inbred rodent models, indicating the need for further investigation in higher vertebrates to better establish clinical relevance. To this end we evaluated a human recombinant apyrase therapy in a canine warm pulmonary ischemia-reperfusion injury (IRI) model and measured eATP levels in human lung recipients with or without primary lung graft dysfunction (PGD).. Warm ischemia was induced for 90 minutes in the left lung of 14 mongrel dogs. Seven minutes after reperfusion, the apyrase APT102 (1 mg/kg, n = 7) or saline vehicle (n = 7) was injected into the pulmonary artery. Arterial blood gases were obtained every 30 minutes up to 180 minutes after reperfusion. Bronchioalveolar lavage fluid (BALF) was analyzed for eATP concentration, cellularity, and inflammatory mediator accumulation. Thirty bilateral human lung transplant recipients were graded for immediate early PGD and assessed for BALF eATP levels.. APT102-treated dogs had progressively better lung function and less pulmonary edema during the 3-hour reperfusion period compared with vehicle-treated controls. Protection from IRI was observed, with lower BALF eATP levels, fewer airway leukocytes, and blunted inflammatory mediator expression. Human lung recipients with moderate to severe PGD had significantly higher eATP levels compared with recipients without this injury.. Extracellular ATP accumulates in acutely injured canine and human lungs. Strategies that target eATP reduction may help protect lung recipients from IRI.

    Topics: Animals; Apyrase; Disease Models, Animal; Dogs; Humans; Lung; Lung Diseases; Lung Transplantation; Primary Graft Dysfunction; Recombinant Proteins; Reperfusion Injury

2015
CD39 expression by hepatic myeloid dendritic cells attenuates inflammation in liver transplant ischemia-reperfusion injury in mice.
    Hepatology (Baltimore, Md.), 2013, Volume: 58, Issue:6

    Hepatic innate immune cells, in particular, interstitial dendritic cells (DCs), regulate inflammatory responses and may promote inherent liver tolerogenicity. After tissue injury, adenosine triphosphate (ATP) is released and acts as a damage-associated molecular pattern that activates innate immune cells by pattern recognition receptors. CD39 (ectonucleoside triphosphate diphosphohydrolase-1) rapidly hydrolyzes extracellular ATP to maintain physiological levels. We hypothesized that CD39 expression on liver DCs might contribute to regulation of their innate immune functions. Mouse liver conventional myeloid DCs (mDCs) were hyporesponsive to ATP, compared with their splenic counterparts. This disparity was ascribed to more efficient hydrolysis of ATP by higher expression of CD39 on liver mDCs. Human liver mDCs expressed greater levels of CD39 than those from peripheral blood. The comparatively high expression of CD39 on liver mDCs correlated strongly with both ATP hydrolysis and adenosine production. Notably, CD39(-/-) mouse liver mDCs exhibited a more mature phenotype, greater responsiveness to Toll-like receptor 4 ligation, and stronger proinflammatory and immunostimulatory activity than wild-type (WT) liver mDCs. To investigate the role of CD39 on liver mDCs in vivo, we performed orthotopic liver transplantation with extended cold preservation using CD39(-/-) or WT donor mouse livers. Compared to WT liver grafts, CD39(-/-) grafts exhibited enhanced interstitial DC activation, elevated proinflammatory cytokine levels, and more-severe tissue injury. Moreover, portal venous delivery of WT, but not CD39(-/-) liver mDCs, to donor livers immediately post-transplant exerted a protective effect against graft injury in CD39(-/-) to CD39(-/-) liver transplantation.. These data reveal that CD39 expression on conventional liver mDCs limits their proinflammatory activity and confers protective properties on these important innate immune cells against liver transplant ischemia/reperfusion injury.

    Topics: Adenosine Triphosphate; Animals; Antigens, CD; Apyrase; Dendritic Cells; Humans; Immunity, Innate; Liver; Liver Transplantation; Male; Mice; Reperfusion Injury; Transplantation Immunology

2013
Loss of ectonucleotidases from the coronary vascular bed after ischemia-reperfusion in isolated rat heart.
    BMC cardiovascular disorders, 2013, Jul-28, Volume: 13

    Ectonucleotidase plays an important role in the regulation of cardiac function by controlling extracellular levels of adenine nucleotides and adenosine. To determine the influence of ischemia-reperfusion injury on ectonucleotidase activity in coronary vascular bed, we compared the metabolic profile of adenine nucleotides during the coronary circulation in pre- and post-ischemic heart.. Langendorff-perfused rat hearts were used to assess the intracoronary metabolism of adenine nucleotides. The effects of ischemia on the adenine nucleotide metabolism were examined after 30 min of ischemia and 30 min of reperfusion. Adenine nucleotide metabolites were measured by high performance liquid chromatography.. ATP, ADP and AMP were rapidly metabolized to adenosine and inosine during the coronary circulation. After ischemia, ectonucleotidase activity of the coronary vascular bed was significantly decreased. In addition, the perfusate from the ischemic heart contained a considerable amount of enzymes degrading ATP, AMP and adenosine. Immunoblot analysis revealed that the perfusate from the ischemic heart dominantly contained ectonucleoside triphosphate diphosphohydrolase 1, and, to a lesser extent, ecto-5'-nucleotidase. The leakage of nucleotide metabolizing enzymes from the coronary vascular bed by ischemia-reperfusion was more remarkable in aged rats, in which post-ischemic cardiac dysfunction was more serious.. Ectonucleotidases were liberated from the coronary vascular bed by ischemia-reperfusion, resulting in an overall decrease in ectonucleotidase activity in the post-ischemic coronary vascular bed. These results suggest that decreased ectonucleotidase activity by ischemia may exacerbate subsequent reperfusion injury, and that levels of circulating ectonucleotidase may reflect the severity of ischemic vascular injury.

    Topics: 5'-Nucleotidase; Adenine Nucleotides; Adenosine; Adenosine Triphosphatases; Aging; Animals; Antigens, CD; Apyrase; Coronary Vessels; Endothelium, Vascular; Heart Rate; In Vitro Techniques; Male; Nucleotidases; Phosphoric Diester Hydrolases; Pyrophosphatases; Rats, Wistar; Reperfusion Injury

2013
Liver grafts from CD39-overexpressing rodents are protected from ischemia reperfusion injury due to reduced numbers of resident CD4+ T cells.
    Hepatology (Baltimore, Md.), 2013, Volume: 57, Issue:4

    Ischemia-reperfusion injury (IRI) is a major limiting event for successful liver transplantation, and CD4+ T cells and invariant natural killer T (iNKT) cells have been implicated in promoting IRI. We hypothesized that hepatic overexpression of CD39, an ectonucleotidase with antiinflammatory functions, will protect liver grafts after prolonged cold ischemia. CD39-transgenic (CD39tg) and wildtype (WT) mouse livers were transplanted into WT recipients after 18 hours cold storage and pathological analysis was performed 6 hours after transplantation. Serum levels of alanine aminotransferase and interleukin (IL)-6 were significantly reduced in recipients of CD39tg livers compared to recipients of WT livers. Furthermore, less severe histopathological injury was demonstrated in the CD39tg grafts. Immune analysis revealed that CD4+ T cells and iNKT cells were significantly decreased in number in the livers of untreated CD39tg mice. This was associated with a peripheral CD4+ T cell lymphopenia due to defective thymocyte maturation. To assess the relative importance of liver-resident CD4+ T cells and iNKT cells in mediating liver injury following extended cold preservation and transplantation, WT mice depleted of CD4+ T cells or mice genetically deficient in iNKT cells were used as donors. The absence of CD4+ T cells, but not iNKT cells, protected liver grafts from early IRI.. Hepatic CD4+ T cells, but not iNKT cells, play a critical role in early IRI following extended cold preservation in a liver transplant model.

    Topics: Alanine Transaminase; Animals; Antigens, CD; Apyrase; CD4-Positive T-Lymphocytes; Disease Models, Animal; Interleukin-6; Killer Cells, Natural; Liver Transplantation; Lymphopenia; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Reperfusion Injury; T-Lymphocytes, Regulatory; Up-Regulation

2013
Deletion of CD39 on natural killer cells attenuates hepatic ischemia/reperfusion injury in mice.
    Hepatology (Baltimore, Md.), 2010, Volume: 51, Issue:5

    Natural killer (NK) cells play crucial roles in innate immunity and express CD39 (Ecto-nucleoside triphosphate diphosphohydrolase 1 [E-NTPD1]), a rate-limiting ectonucleotidase in the phosphohydrolysis of extracellular nucleotides to adenosine. We have studied the effects of CD39 gene deletion on NK cells in dictating outcomes after partial hepatic ischemia/reperfusion injury (IRI). We show in mice that gene deletion of CD39 is associated with marked decreases in phosphohydrolysis of adenosine triphosphate (ATP) and adenosine diphosphate to adenosine monophosphate on NK cells, thereby modulating the type-2 purinergic (P2) receptors demonstrated on these cells. We note that CD39-null mice are protected from acute vascular injury after single-lobe warm IRI, and, relative to control wild-type mice, display significantly less elevation of aminotransferases with less pronounced histopathological changes associated with IRI. Selective adoptive transfers of immune cells into Rag2/common gamma null mice (deficient in T cells, B cells, and NK/NKT cells) suggest that it is CD39 deletion on NK cells that provides end-organ protection, which is comparable to that seen in the absence of interferon gamma. Indeed, NK effector mechanisms such as interferon gamma secretion are inhibited by P2 receptor activation in vitro. Specifically, ATPgammaS (a nonhydrolyzable ATP analog) inhibits secretion of interferon gamma by NK cells in response to interleukin-12 and interleukin-18, providing a mechanistic link between CD39 deletion and altered cytokine secretion.. We propose that CD39 deficiency and changes in P2 receptor activation abrogate secretion of interferon gamma by NK cells in response to inflammatory mediators, thereby limiting tissue damage mediated by these innate immune cells during IRI.

    Topics: Adenosine Diphosphate; Adenosine Triphosphate; Animals; Antigens, CD; Apyrase; Killer Cells, Natural; Mice; Mice, Inbred C57BL; Receptors, Purinergic P2; Reperfusion Injury

2010
SP1-dependent induction of CD39 facilitates hepatic ischemic preconditioning.
    Journal of immunology (Baltimore, Md. : 1950), 2010, Apr-01, Volume: 184, Issue:7

    Ischemia/reperfusion injury (IRI) of the liver is an important cause of hepatic dysfunction. Ischemic preconditioning (IP) is associated with adenosine-mediated tissue protection from subsequent IRI. Extracellular nucleotides (e.g., ATP) represent the main source for extracellular adenosine. Therefore, we hypothesized that phosphohydrolysis of ATP/ADP via the ectonucleoside triphosphate diphosphohydrolase-1 (CD39), conversion of ATP/ADP to AMP, mediates IP-dependent liver protection. We found that hepatic IP was associated with significant induction of CD39 transcript, heightened protein expression, and improved outcomes after IRI. Targeted gene deletion or pharmacological inhibition of CD39 abolished hepatoprotection by IP as measured by serum markers of liver injury or histology. Therapeutic studies to mimic IP with i.p. apyrase (a soluble ectonucleoside triphosphate diphosphohydrolase, NTPDase) in the absence of IP attenuated hepatic injury after IRI. In additional in vivo studies, small interfering RNA treatment was used to achieve repression of the transcription factor Sp1, known to be implicated in CD39 transcriptional regulation. In fact, Sp1 small interfering RNA treatment was associated with attenuated CD39 induction and increased hepatic injury in vivo. Our data suggest a Sp1-dependent regulatory pathway for CD39 during hepatic IP. These studies reveal a novel role of CD39 in hepatic protection and suggest soluble apyrase for the treatment of liver ischemia.

    Topics: Animals; Antigens, CD; Apyrase; Blotting, Western; Enzyme Inhibitors; Female; Immunoglobulins; Immunohistochemistry; Ischemic Preconditioning; Liver; Male; Mice; Mice, Knockout; Reperfusion Injury; Reverse Transcriptase Polymerase Chain Reaction

2010
Transgenic overexpression of CD39 protects against renal ischemia-reperfusion and transplant vascular injury.
    American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2010, Volume: 10, Issue:12

    The vascular ectonucleotidases CD39[ENTPD1 (ectonucleoside triphosphate diphosphohydrolase-1), EC 3.6.1.5] and CD73[EC 3.1.3.5] generate adenosine from extracellular nucleotides. CD39 activity is critical in determining the response to ischemia-reperfusion injury (IRI), and CD39 null mice exhibit heightened sensitivity to renal IRI. Adenosine has multiple mechanisms of action in the vasculature including direct endothelial protection, antiinflammatory and antithrombotic effects and is protective in several models of IRI. Mice transgenic for human CD39 (hCD39) have increased capacity to generate adenosine. We therefore hypothesized that hCD39 transgenic mice would be protected from renal IRI. The overexpression of hCD39 conferred protection in a model of warm renal IRI, with reduced histological injury, less apoptosis and preserved serum creatinine and urea levels. Benefit was abrogated by pretreatment with an adenosine A2A receptor antagonist. Adoptive transfer experiments showed that expression of hCD39 on either the vasculature or circulating cells mitigated IRI. Furthermore, hCD39 transgenic kidneys transplanted into syngeneic recipients after prolonged cold storage performed significantly better and exhibited less histological injury than wild-type control grafts. Thus, systemic or local strategies to promote adenosine generation and signaling may have beneficial effects on warm and cold renal IRI, with implications for therapeutic application in clinical renal transplantation.

    Topics: Adenosine; Animals; Antigens, CD; Apyrase; Cold Ischemia; Humans; Kidney Cortex Necrosis; Mice; Mice, Transgenic; Models, Animal; Reperfusion Injury

2010
Therapeutic potential for CD39 in renal transplantation: there is hope.
    American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 2010, Volume: 10, Issue:12

    Topics: Adenosine; Antigens, CD; Apyrase; Delayed Graft Function; Humans; Kidney Transplantation; Receptor, Adenosine A2A; Reperfusion Injury; Transplantation Immunology

2010
Deficiency or inhibition of CD73 protects in mild kidney ischemia-reperfusion injury.
    Transplantation, 2010, Dec-27, Volume: 90, Issue:12

    Adenosine agonists are protective in numerous models of ischemia-reperfusion injury (IRI). Pericellular adenosine is generated by the hydrolysis of extracellular adenosine triphosphate and adenosine diphosphate by the ectonucleotidase CD39 and the subsequent hydrolysis of adenosine monophosphate (AMP) by the ectonucleotidase CD73. CD39 activity is protective in kidney IRI, whereas the role of CD73 remains unclear.. Wild-type (WT), CD73-deficient (CD73KO), CD39-transgenic (CD39tg), and hybrid CD39tg.CD73KO mice underwent right nephrectomy and unilateral renal ischemia (18-min ischemia by microvascular pedicle clamp). Renal function (serum creatinine [SCr], micromolar per liter) and histologic renal injury (score 0-9) were assessed after 24-hr reperfusion. Treatments included a CD73 inhibitor and soluble CD73.. Compared with WT mice (n=33, SCr 81.0, score 4.1), (1) CD73KO mice were protected (n=17, SCr 48.9, score 2.0, P<0.05), (2) CD39tg mice were protected (n=11, SCr 45.6, score 1.3, P<0.05), (3) WT mice treated with CD73 inhibitor were protected (n=9, SCr 43.3, score 1.2, P<0.05), (4) CD73KO mice reconstituted with soluble CD73 lost their protection (n=10, SCr 63.8, score 3.1, P=ns), (5) WT mice treated with soluble CD73 were not protected (n=7, SCr 78.0, score 4.1), and (6) CD39tg.CD73KO mice were protected (n=8, SCr 55.5, score 0.7, P<0.05).. Deficiency or inhibition of CD73 protects in kidney IRI, and CD39-mediated protection does not seem to be dependent on adenosine generation. These findings suggest that AMP may play a direct protective role in kidney IRI, which could be used in therapeutic development and organ preservation. Investigating the mechanisms by which AMP mediates protection may lead to new targets for research in kidney IRI.

    Topics: 5'-Nucleotidase; Adenosine Monophosphate; Animals; Antigens, CD; Apyrase; Creatinine; Disease Models, Animal; Kidney Diseases; Kidney Function Tests; Mice; Mice, Knockout; Mice, Transgenic; Reperfusion Injury

2010
Apyrase treatment prevents ischemia-reperfusion injury in rat lung isografts.
    The Journal of thoracic and cardiovascular surgery, 2009, Volume: 138, Issue:3

    Endothelial cells express the ectoenzyme ectonucleoside adenosine triphosphate diphosphohydrolase, an apyrase that inhibits vascular inflammation by catalyzing the hydrolysis of adenosine triphosphate and adenosine diphosphate. However, ectonucleoside adenosine triphosphate diphosphohydrolase expression is rapidly lost following oxidative stress, leading to the potential for adenosine triphosphate and related purigenic nucleotides to exacerbate acute solid organ inflammation and injury. We asked if administration of a soluble recombinant apyrase APT102 attenuates lung graft injury in a cold ischemia reperfusion model of rat syngeneic orthotopic lung transplantation.. Male Fisher 344 donor lungs were cold preserved in a low-potassium dextrose solution in the presence or absence of APT102 for 18 hours prior to transplantation into syngeneic male Fisher 344 recipients. Seven minutes after reperfusion, lung transplant recipients received either a bolus of APT102 or vehicle (saline solution). Four hours after reperfusion, APT102- and saline solution-treated groups were evaluated for lung graft function and inflammation.. APT102 significantly reduced lung graft extracellular pools of adenosine triphosphate and adenosine diphosphate, improved oxygenation, and protected against pulmonary edema. Apyrase treatment was associated with attenuated neutrophil graft sequestration and less evidence of tissue inflammation as assessed by myeloperoxidase activity, expression of proinflammatory mediators, and numbers of apoptotic endothelial cells.. Administration of a soluble recombinant apyrase promotes lung function and limits the tissue damage induced by prolonged cold storage, indicating that extracellular purigenic nucleotides play a key role in promoting ischemia-reperfusion injury following lung transplantation.

    Topics: Adenosine Diphosphate; Adenosine Triphosphate; Animals; Apoptosis; Apyrase; Bronchopulmonary Sequestration; Chemokines; Cytokines; Endothelium, Vascular; Leukocyte Count; Lung Transplantation; Male; Neutrophils; Peroxidase; Pulmonary Edema; Rats; Rats, Inbred F344; Recombinant Proteins; Reperfusion Injury

2009
The impact of purinergic signaling on renal ischemia-reperfusion injury.
    Transplantation, 2008, Dec-27, Volume: 86, Issue:12

    Adenosine provides renovascular protection in mouse models of ischemia-reperfusion injury (I/RI) through purinergic members of the G protein-coupled receptor family, such as the adenosine 2A receptor (A2AR). Ectonucleotidases CD39 and CD73 are integral vascular and immune nucleotidases that regulate extracellular adenosine signaling. Current investigation of CD39 and CD73 in renal I/RI has primarily focused on their respective roles in ischemic preconditioning.. In this study, we established a unilateral renal I/RI model and investigated the role of adenosine generation versus nucleotide removal in mediating protection in renal I/RI using mice deficient in CD39, CD73 or A2AR, thereby sequentially disrupting ectonucleotidase cascade and adenosinergic signaling.. Compared with wild-type mice, Cd73 null mice showed reduced levels of serum creatinine and urea, apoptosis of renal cells, and histologic damage after I/RI. Deletion of CD39 was associated with severe renal injury. Administration of apyrase, a soluble form of CD39, decreased global apoptosis and I/RI induced renal injury in wild-type mice. Apyrase treatment also improved renal histology to some extent in A2AR null mice.. The relative protective effect of CD73 deletion in renal I/RI may reflect an effect of AMP accumulation. Deletion of CD39 showed deleterious effects and administration of soluble CD39 exerted renal protection, which is partially mediated by A2AR. The protective effect conferred by apyrase suggests that supplementing CD39 NTPDase activity may be a useful therapeutic strategy in renal transplantation.

    Topics: 5'-Nucleotidase; Adenosine; Animals; Antigens, CD; Apyrase; In Situ Nick-End Labeling; Kidney; Mice; Mice, Knockout; Receptor, Adenosine A2A; Receptors, G-Protein-Coupled; Renal Circulation; Reperfusion Injury; Signal Transduction

2008
Contribution of E-NTPDase1 (CD39) to renal protection from ischemia-reperfusion injury.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2007, Volume: 21, Issue:11

    Previous studies showed increased extracellular nucleotides during renal ischemia-reperfusion. While nucleotides represent the main source for extracellular adenosine and adenosine signaling contributes to renal protection from ischemia, we hypothesized a role for ecto-nucleoside-triphosphate-diphosphohydrolases (E-NTPDases) in renal protection. We used a model of murine ischemia-reperfusion and in situ ischemic preconditioning (IP) via a hanging weight system for atraumatic renal artery occlusion. Initial studies with a nonspecific inhibitor of E-NTPDases (POM-1) revealed inhibition of renal protection by IP. We next pursued transcriptional responses of E-NTPDases (E-NTPDase1-3, and 8) to renal IP, and found a robust and selective induction of E-NTPDase1/CD39 transcript and protein. Moreover, based on clearance studies, plasma electrolytes, and renal tubular histology, IP protection was abolished in gene-targeted mice for cd39 whereas increased renal adenosine content with IP was attenuated. Furthermore, administration of apyrase reconstituted renal protection by IP in cd39-/- mice. Finally, apyrase treatment of wild-type mice resulted in increased renal adenosine concentrations and a similar degree of renal protection from ischemia as IP treatment. Taken together, these data identify CD39-dependent nucleotide phosphohydrolysis in renal protection. Moreover, the present studies suggest apyrase treatment as a novel pharmacological approach to renal diseases precipitated by limited oxygen availability.

    Topics: Acute Kidney Injury; Adenosine; Animals; Antigens, CD; Apyrase; Female; Ischemic Preconditioning; Kidney; Kidney Function Tests; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Renal Artery; Renal Circulation; Reperfusion Injury

2007
Beneficial effects of CD39/ecto-nucleoside triphosphate diphosphohydrolase-1 in murine intestinal ischemia-reperfusion injury.
    Thrombosis and haemostasis, 2004, Volume: 91, Issue:3

    CD39 (ecto-nucleoside triphosphate diphosphohydrolase-1; E-NTPDase-1), is highly expressed on quiescent vascular endothelial cells and efficiently hydrolyzes extracellular ATP and ADP to AMP and ultimately adenosine. This action blocks extracellular nucleotide-dependent platelet aggregation and abrogates endothelial cell activation. However, CD39 enzymatic activity is rapidly lost following exposure to oxidant stress. Modulation of extracellular nucleotide levels may therefore play an important role in the pathogenesis of vascular injury. Acute ischemic injury of the bowel is a serious medical condition characterized by high mortality rates with limited therapeutic options. Here we evaluate the effects of cd39-deletion in mutant mice and the use of supplemental NTPDase or adenosine in influencing the outcomes of intestinal ischemia-reperfusion. Wild-type, cd39-null, or hemizygous cd39-deficient mice were subjected to intestinal ischemia. In selected animals, 0.2 U/g apyrase (soluble NTPDase) was administered prior to re-establishment of blood-flow. In parallel experiments adenosine/amrinone was infused over 60 min during reperfusion periods. Survival rates were determined, serum and tissue samples were taken. Intravital videomicroscopy and studies of vascular permeability were used to study platelet-endothelial cell interactions and determine capillary leakage. In wild-type animals, ischemia reperfusion injury resulted in 60% mortality within 48 hours. In mutant mice null or deficient for cd39, ischemia reperfusion-related death occurred in 80% of animals. Apyrase supplementation protected all wild-type animals from death due to intestinal ischemia but did not fully protect cd39-null and cd39-hemizygote mice. Adenosine/amrinone treatment failed to improve survival figures. In wild type mice, platelet adherence to postcapillary venules was significantly decreased and vascular integrity was well preserved following apyrase administration. In cd39-null mice, ischemia-reperfusion induced marked albumin leakage indicative of heightened vascular permaeability when compared to wild-type animals (p=0.04). Treatment with NTPDase or adenosine supplementation abrogated the increased vascular permeability in ischemic jejunal specimens of both wild-type mice and cd39-null. CD39 activity modulates platelet activation and vascular leak during intestinal ischemia reperfusion injury in vivo. The potential of NTPDases to maintain vascular integrity suggests potential pharm

    Topics: Adenosine; Adenosine Diphosphate; Adenosine Triphosphatases; Adenosine Triphosphate; Animals; Antigens, CD; Apyrase; Blood Platelets; Capillaries; Cyclic AMP; Cytokines; Endothelium, Vascular; Gene Deletion; Intestine, Small; Ischemia; Male; Mice; Mice, Inbred C57BL; Microscopy, Video; Oxidative Stress; Permeability; Peroxidase; Platelet Activation; Reperfusion Injury; Time Factors; Vascular Endothelial Growth Factor A

2004
Loss of ATP diphosphohydrolase activity with endothelial cell activation.
    The Journal of experimental medicine, 1997, Jan-06, Volume: 185, Issue:1

    Quiescent endothelial cells (EC) regulate blood flow and prevent intravascular thrombosis. This latter effect is mediated in a number of ways, including expression by EC of thrombomodulin and heparan sulfate, both of which are lost from the EC surface as part of the activation response to proinflammatory cytokines. Loss of these anticoagulant molecules potentiates the procoagulant properties of the injured vasculature. An additional thromboregulatory factor, ATP diphosphohydrolase (ATPDase; designated as EC 3.6.1.5) is also expressed by quiescent EC, and has the capacity to degrade the extracellular inflammatory mediators ATP and ADP to AMP, thereby inhibiting platelet activation and modulating vascular thrombosis. We describe here that the antithrombotic effects of the ATPDase, like heparan sulfate and thrombomodulin, are lost after EC activation, both in vitro and in vivo. Because platelet activation and aggregation are important components of the hemostatic changes that accompany inflammatory diseases, we suggest that the loss of vascular ATPDase may be crucial for the progression of vascular injury.

    Topics: Adenosine Diphosphate; Adenosine Triphosphate; Amino Acid Sequence; Animals; Antibodies; Aorta; Apyrase; Cells, Cultured; Endothelium, Vascular; Humans; Hydrogen Peroxide; Inflammation; Kinetics; Molecular Sequence Data; Oxidative Stress; Peptide Fragments; Platelet Aggregation; Reperfusion Injury; Swine; Thionucleotides; Tumor Necrosis Factor-alpha

1997
Loss of rat glomerular ATP diphosphohydrolase activity during reperfusion injury is associated with oxidative stress reactions.
    Thrombosis and haemostasis, 1996, Volume: 76, Issue:5

    Endothelial cell ATP diphosphohydrolases or ATPDases degrade extracellular inflammatory mediators ATP and ADP, thus inhibiting the formation of platelet thrombi, but the modulation of these ecto-enzymes during vascular injury remains largely undetermined. Renal glomerular ATPDase levels were determined in the rat following ischemia-reperfusion or systemic complement activation, by direct biochemical methods and histochemistry. Ischemia followed by reperfusion times over 30 min were associated with loss of glomerular ATPDase activity. Cobra Venom Factor (CVF) inhibited ATPDase activity and potentiated the deleterious effects of reperfusion. Treatment with either soluble complement receptor type 1 (sCR1), an inhibitor of complement activation, or antioxidants prior to the ischemia-reperfusion was largely protective. Expression of rat glomerular ATPDase activity appears susceptible to the inflammatory injury associated with systemic complement activation and ischemia/reperfusion processes. Oxidative stress could, at least in part, result in the loss of ATPDase activity and thus thrombotic consequences of vascular injury.

    Topics: Adenosine Diphosphate; Adenosine Triphosphate; Animals; Antioxidants; Apyrase; Complement Activation; Endothelium, Vascular; Ischemia; Kidney; Kidney Glomerulus; Male; Oxidative Stress; Platelet Aggregation; Pregnatrienes; Rats; Rats, Inbred Lew; Reactive Oxygen Species; Reperfusion Injury

1996