apyrase has been researched along with Obesity* in 3 studies
3 other study(ies) available for apyrase and Obesity
Article | Year |
---|---|
ATP-Induced Inflammation Drives Tissue-Resident Th17 Cells in Metabolically Unhealthy Obesity.
Obesity-induced inflammation is conducted by a metabolic pathway, which eventually causes activation of specialized immune cells and leads to an unresolved inflammatory response within the tissue. For this reason, it is critically important to determine how hypertrophic fat tissue alters T cell balance to drive inflammation. In this study, we identify the purinergic signaling as a novel mechanism driving the adaptive Th17 response in human visceral adipose tissue (VAT) of metabolically unhealthy obese patients. We demonstrate that ATP acting via the P2X7 receptor pathway promotes a Th17 polarizing microenvironment with high levels of IL-1β, IL-6, and IL-17 in VAT explants from lean donors. Moreover, in vitro blockade of the P2X7 receptor abrogates the levels of these cytokines. These findings are consistent with a greater frequency of Th17 cells in tissue from metabolically unhealthy obese donors, revealed not only by the presence of a baseline Th17-promoting milieu, but also by the higher expression of steadily recognized Th17 markers, such as RORC, IL-17 cytokine, and IL-23R, in comparison with metabolically healthy obese and lean donors. In addition, we demonstrate that CD39 expression on CD4(+)effector T cells represents a novel Th17 marker in the inflamed VAT, which also confers protection against ATP-induced cell death. The manipulation of the purinergic signaling might represent a new therapeutic target to shift the CD4(+)T cell balance under inflammatory conditions. Topics: Adenosine Triphosphate; Adult; Antigens, CD; Apoptosis; Apyrase; Cellular Microenvironment; Female; Humans; Inflammation; Interleukin-17; Interleukin-1beta; Interleukin-6; Intra-Abdominal Fat; Male; Nuclear Receptor Subfamily 1, Group F, Member 3; Obesity; Receptors, Interleukin; Receptors, Purinergic P2X7; Th17 Cells | 2016 |
Expression of CD73 and A2A receptors in cells from subjects with obesity and type 2 diabetes mellitus.
Regulatory T cells have various mechanisms to suppress the inflammatory response, among these, the modulation of the microenvironment through adenosine and with the participation of CD39, CD73 and A2A. The aim of this study was to assess the expression of CD73 and A2A in immune cells and the effect of activation of A2A by an adenosine analogue on apoptosis in patients with obesity and type 2 diabetes mellitus (T2D). CD73 and A2A expression were analyzed by flow cytometry in lymphocyte subpopulations from patients with obesity (n = 22), T2D (n = 22), and healthy subjects (n = 20). Lymphocytes were treated with the selective A2A antagonist (ZM241385) or the selective A2A agonist (CGS21680), and apoptotic cells were detected by Annexin V. We found an increased expression of CD39 coupled to a decrease in CD73 in the patient groups with obesity and T2D compared to the control group in the different studied lymphocyte subpopulations. A2A expression was found to be increased in different subpopulations of lymphocytes from T2D patients. We also detected positive correlations between CD39+ cells and age and BMI. Meanwhile, CD73+ cells showed negative correlations with age, WHR, BMI, FPG, HbAc1, triglycerides and cholesterol. Moreover, an increase in the percentage of apoptotic cells from T2D patients with regard to the groups with obesity and control was observed. In addition, the CD8+ T cells of patients with T2D exhibited decreased apoptosis when treated with the A2A agonist. In conclusion, our data suggest a possible role for CD73 and A2A in inflammation observed in patients with T2D and obesity mediated via apoptosis. Topics: 5'-Nucleotidase; Adenosine; Adult; Antigens, CD; Apoptosis; Apyrase; Body Mass Index; CD8-Positive T-Lymphocytes; Diabetes Mellitus, Type 2; Gene Expression Regulation; GPI-Linked Proteins; Humans; Inflammation; Lymphocyte Subsets; Lymphocytes; Obesity; Phenethylamines; Receptor, Adenosine A2A; Triazines; Triazoles | 2015 |
Insulin inhibits IL-10-mediated regulatory T cell function: implications for obesity.
Chronic inflammation is known to promote metabolic dysregulation in obesity and type 2 diabetes. Although the precise origin of the unchecked inflammatory response in obesity is unclear, it is known that overproduction of proinflammatory cytokines by innate immune cells affects metabolism. For example, TNF-α contributes to the inability of cells to respond to insulin and to the increase in levels of insulin. Whether this hyperinsulinemia itself is part of a feedback loop that affects the progression of chronic adipose inflammation is unknown. In this article, we show that regulatory T cells (Tregs) express the insulin receptor, and that high levels of insulin impair the ability of Tregs to suppress inflammatory responses via effects on the AKT/mTOR signaling pathway. Insulin activated AKT signaling in Tregs, leading to inhibition of both IL-10 production and the ability of Tregs to suppress the production of TNF-α by macrophages in a contact-independent manner. The effect of insulin on Treg suppression was limited to IL-10 production and it did not alter the expression of other proteins associated with Treg function, including CTLA-4, CD39, and TGF-β. In a model of diet-induced obesity, Tregs from the visceral adipose tissue of hyperinsulinemic, obese mice showed a similar specific decrease in IL-10 production, as well as a parallel increase in production of IFN-γ. These data suggest that hyperinsulinemia may contribute to the development of obesity-associated inflammation via a previously unknown effect of insulin on the IL-10-mediated function of Tregs. Topics: Animals; Antigens, CD; Apyrase; Cells, Cultured; CTLA-4 Antigen; Epithelial Cells; Epithelium; Hyperinsulinism; Inflammation; Insulin; Interferon-gamma; Interleukin-10; Intra-Abdominal Fat; Macrophages; Mice; Mice, Inbred C57BL; Obesity; Proto-Oncogene Proteins c-akt; Receptor, Insulin; Signal Transduction; T-Lymphocytes, Regulatory; TOR Serine-Threonine Kinases; Transforming Growth Factor beta; Tumor Necrosis Factor-alpha | 2014 |