apyrase has been researched along with Dysentery--Bacillary* in 2 studies
2 other study(ies) available for apyrase and Dysentery--Bacillary
Article | Year |
---|---|
Alteration in apyrase enzyme attenuated virulence of Shigella flexneri.
Virulence of Shigella is attributed to the genes presence in chromosome or in the megaplasmid. The apy gene which is located in the megaplasmid of Shigella species encodes for apyrase enzyme, a pathogenesis-associated enzyme causing mitochondrial damage and host cell death. In this study we constructed an apy mutant of Shigella flexneri by insertional activation using a kanamycin resistant gene cassette. The wild type apy gene of S. flexneri 2a was PCR amplified, cloned and mutated with insertion of kanamycin resistant gene cassette (aphA). The mutated construct (apy: aphA) was subcloned into a conjugative suicidal vector (pWM91) at the unique Sma1 and Sac1 sites. The mutation of the wild apy gene in the construct was confirmed by DNA sequencing. The mutated construct was introduced into wild type S. flexneri 2a by conjugation with Escherichia coli. After undergoing homologous recombination, the wild apy gene was deleted from the construct using the sucrose selection method. Non-functional activity of the apyrase enzyme in the constructed strain by colorimetric test indicated the successful mutation of the apyrase enzyme. This strain with mutated apy gene was evaluated for its protective efficacy using the guinea pig keratoconjunctivitis model. The strain was Sereny negative and it elicited a significant protection following challenge with wild S. flexneri strain. This apy mutant strain will form a base for the development of a vaccine target for shigellosis. Topics: Animals; Apyrase; Bacterial Proteins; Dysentery, Bacillary; Guinea Pigs; Humans; Mutation; Shigella flexneri; Virulence | 2016 |
Apyrase-based colorimetric test for detection of Shigella and enteroinvasive Escherichia coli in stool.
For lack of simple inexpensive early detection methods for Shigella spp. and enteroinvasive Escherichia coli (EIEC), bacillary dysentery remains a major cause of childhood mortality and morbidity in India and other developing countries. Rapid stool testing for apyrase, a specific periplasmic enzyme essential for the pathogen's intracellular spread, may provide a solution. We have developed a whole-cell colorimetric pyrophosphate hydrolysis assay based on cheap, stable, and locally available reagents. An innovative filtration-cum-inoculation step eliminates interfering stool solids and ensures sufficient bacterial growth and apyrase expression in 6 to 7 h at 37 degrees C. In a limited double-blind study of 57 clinical isolates of common enterobacteria, the test showed 100% sensitivity and 80% specificity for Shigella spp. and EIEC. Requiring only widely available equipment and inexpensive consumables, this affordable test is readily adaptable for determining antibiograms and for surveillance of food and water samples for the presence of Shigella and EIEC. Topics: Apyrase; Bacterial Proteins; Bacteriological Techniques; Colorimetry; Diphosphates; Dysentery, Bacillary; Escherichia coli; Escherichia coli Infections; Feces; Food Microbiology; India; Microbial Sensitivity Tests; Sensitivity and Specificity; Shigella | 2009 |