apyrase has been researched along with Dehydration* in 2 studies
2 other study(ies) available for apyrase and Dehydration
Article | Year |
---|---|
Ectopic expression of a pea apyrase enhances root system architecture and drought survival in Arabidopsis and soybean.
Ectoapyrases (ecto-NTPDases) function to decrease levels of extracellular ATP and ADP in animals and plants. Prior studies showed that ectopic expression of a pea ectoapyrase, psNTP9, enhanced growth in Arabidopsis seedlings and that the overexpression of the two Arabidopsis apyrases most closely related to psNTP9 enhanced auxin transport and growth in Arabidopsis. These results predicted that ectopic expression of psNTP9 could promote a more extensive root system architecture (RSA) in Arabidopsis. We confirmed that transgenic Arabidopsis seedlings had longer primary roots, more lateral roots, and more and longer root hairs than wild-type plants. Because RSA influences water uptake, we tested whether the transgenic plants could tolerate osmotic stress and water deprivation better than wild-type plants, and we confirmed these properties. Transcriptomic analyses revealed gene expression changes in the transgenic plants that helped account for their enhanced RSA and improved drought tolerance. The effects of psNTP9 were not restricted to Arabidopsis, because its expression in soybeans improved the RSA, growth, and seed yield of this crop and supported higher survival in response to drought. Our results indicate that in both Arabidopsis and soybeans, the constitutive expression of psNTP9 results in a more extensive RSA and improved survival in drought stress conditions. Topics: Apyrase; Arabidopsis; Dehydration; Ectopic Gene Expression; Glycine max; Pisum sativum; Plant Proteins; Plant Roots; Plant Stomata; Plants, Genetically Modified | 2019 |
Feed forward cycle of hypotonic stress-induced ATP release, purinergic receptor activation, and growth stimulation of prostate cancer cells.
ATP is released in many cell types upon mechanical strain, the physiological function of extracellular ATP is largely unknown, however. Here we report that ATP released upon hypotonic stress stimulated prostate cancer cell proliferation, activated purinergic receptors, increased intracellular [Ca(2+)](i), and initiated downstream signaling cascades that involved MAPKs ERK1/2 and p38 as well as phosphatidylinositol 3-kinase (PI3K). MAPK activation, the calcium response as well as induction of cell proliferation upon hypotonic stress were inhibited by preincubation with the ATP scavenger apyrase, indicating that hypotonic stress-induced signaling pathways are elicited by released ATP. Hypotonic stress increased prostaglandin E(2) (PGE(2)) synthesis. Consequently, ATP release was inhibited by antagonists of PI3K (LY294002 and wortmannin), phospholipase A(2) (methyl arachidonyl fluorophosphonate (MAFP)), cyclooxygenase-2 (COX-2) (indomethacin, etodolac, NS398) and 5,8,11,14-eicosatetraynoic acid (ETYA), which are involved in arachidonic acid metabolism. Furthermore, ATP release was abolished in the presence of the adenylate cyclase (AC) inhibitor MDL-12,330A, indicating regulation of ATP-release by cAMP. The hypotonic stress-induced ATP release was significantly blunted when the ATP-mediated signal transduction cascade was inhibited on different levels, i.e. purinergic receptors were blocked by suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), the Ca(2+) response was inhibited upon chelation of intracellular Ca(2+) by 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), and ERK1,2 as well as p38 were inhibited by UO126 and SB203580, respectively. In summary our data demonstrate that hypotonic stress initiates a feed forward cycle of ATP release and purinergic receptor signaling resulting in proliferation of prostate cancer cells. Topics: Adenosine Triphosphate; Animals; Apyrase; Arachidonic Acid; Calcium; Cell Line, Tumor; Cell Proliferation; Cyclic AMP; Dehydration; Enzyme Inhibitors; Feedback, Physiological; Humans; Hypotonic Solutions; Male; Mitogen-Activated Protein Kinases; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Prostatic Neoplasms; Receptors, Purinergic; Second Messenger Systems | 2006 |