apyrase has been researched along with Carcinoma--Small-Cell* in 1 studies
1 other study(ies) available for apyrase and Carcinoma--Small-Cell
Article | Year |
---|---|
The common occurrence of ATP diphosphohydrolase in mammalian plasma membranes.
In the plasma membranes from several mammalian tissues (including normal and tumor tissues), a Mg2+ (or Ca2+)-dependent ATP phosphohydrolase activity is present in much greater amount than the (Na+ + K+)-ATPase. The ouabain-insensitive activity can be attributed to at least two enzymes, an ATPase (EC 3.6.1.3) and an ATP diphosphohydrolase (EC 3.6.1.5). The ATPase hydrolyzes ATP and other nucleoside triphosphates and is not inhibited by azide. The ATP diphosphohydrolase hydrolyzes both ATP and ADP (and other nucleoside tri- and diphosphates) and the hydrolysis of adenine nucleotides is strongly inhibited by 10 mM azide. The ratios of these two enzymes in the various membranes (as determined by the extent of azide inhibition) vary widely. The ATP diphosphohydrolase accounts for most of the Mg2+ (or Ca2+)-dependent ATP hydrolysis activity of the plasma membranes of liver (mouse), kidney (dog), two mouse sarcomas, and a human astrocytoma (xenograft in athymic mice). The ATPase is more dominant in the plasma membranes from mouse brain and human oat cell carcinoma. The widespread presence of the ATP diphosphohydrolase in plasma membrane from various types of tissues is demonstrated for the first time and is of particular interest in view of its relatively high activity in the plasma membranes of two sarcomas. The membrane-bound ATP diphosphohydrolase is characterized with respect to its metal ion activators, substrates, and inhibitors. These results should facilitate the distinction of this enzyme from other ATP hydrolyzing enzymes of plasma membranes in future investigations. Topics: Adenosine Diphosphate; Adenosine Triphosphatases; Apyrase; Carcinoma, Small Cell; Cell Membrane; Humans; Hydrolysis; Phosphoric Monoester Hydrolases; Tissue Distribution | 1983 |