apyrase has been researched along with Aortic-Diseases* in 2 studies
2 other study(ies) available for apyrase and Aortic-Diseases
Article | Year |
---|---|
ATP-based therapy prevents vascular calcification and extends longevity in a mouse model of Hutchinson-Gilford progeria syndrome.
Pyrophosphate deficiency may explain the excessive vascular calcification found in children with Hutchinson-Gilford progeria syndrome (HGPS) and in a mouse model of this disease. The present study found that hydrolysis products of ATP resulted in a <9% yield of pyrophosphate in wild-type blood and aortas, showing that eNTPD activity (ATP → phosphate) was greater than eNPP activity (ATP → pyrophosphate). Moreover, pyrophosphate synthesis from ATP was reduced and pyrophosphate hydrolysis (via TNAP; pyrophosphate → phosphate) was increased in both aortas and blood obtained from mice with HGPS. The reduced production of pyrophosphate, together with the reduction in plasma ATP, resulted in marked reduction of plasma pyrophosphate. The combination of TNAP inhibitor levamisole and eNTPD inhibitor ARL67156 increased the synthesis and reduced the degradation of pyrophosphate in aortas and blood ex vivo, suggesting that these combined inhibitors could represent a therapeutic approach for this devastating progeroid syndrome. Treatment with ATP prevented vascular calcification in HGPS mice but did not extend longevity. By contrast, combined treatment with ATP, levamisole, and ARL67156 prevented vascular calcification and extended longevity by 12% in HGPS mice. These findings suggest a therapeutic approach for children with HGPS. Topics: Adenosine Triphosphate; Alkaline Phosphatase; Animals; Antigens, CD; Aortic Diseases; Apyrase; Calcinosis; Diphosphates; Disease Models, Animal; Gene Knock-In Techniques; Humans; Lamin Type A; Levamisole; Longevity; Male; Mice; Mice, Transgenic; Myocytes, Smooth Muscle; Phosphoric Diester Hydrolases; Progeria; Pyrophosphatases; Real-Time Polymerase Chain Reaction; RNA Interference; RNA, Small Interfering | 2019 |
Aortic medial calcification in progeria-like syndrome.
Aortic medial calcification was investigated in rats in which the progeria-like syndrome (PLS) was evoked by administering dihydrotachysterol. In 35 experimental rats and 15 controls, calcification was studied morphologically by light and electron microscopy, and by enzyme histochemistry. Body weight, food intake and serum calcium levels were also determined. Calcification occurred along and on the elastic lamellae in association with the accumulation of ground substance. In the smooth-muscle cells surrounding the calcified foci, the activities of various lysosomal enzymes increased concomitantly with a tendency toward transformation of smooth-muscle cells to a modified form. From these observations, the role of ground-substance formation by smooth-muscle cells is postulated, and participation in the catabolism of ground substance by the lysosomal enzymes of these cells is suggested. It appears the increased activity of adenosine monophosphatase should be linked to the calcification. The etiology of weight loss, skin manifestations and aortic calcification in PLS rats seems to be different from that in human progeric diseases. Therefore, the PLS rat should not be readily accepted as an animal model for the study of progeric diseases. Topics: Acid Phosphatase; Adenosine Triphosphatases; Animals; Aorta; Aortic Diseases; Apyrase; Body Weight; Calcinosis; Calcium; Dihydrotachysterol; Female; Glucuronidase; Hexosaminidases; Histocytochemistry; Phosphoric Monoester Hydrolases; Rats; Werner Syndrome | 1977 |