apyrase has been researched along with Acute-Disease* in 9 studies
1 review(s) available for apyrase and Acute-Disease
Article | Year |
---|---|
The role of danger signals and ectonucleotidases in acute graft-versus-host disease.
Allogeneic hematopoietic cell transplantation (allo-HCT) represents the only curative treatment approach for many patients with benign or malignant diseases of the hematopoietic system. However, post-transplant morbidity and mortality are significantly increased by the development of acute graft-versus-host disease (GvHD). While alloreactive T cells act as the main cellular mediator of the GvH reaction, recent evidence suggests a critical role of the innate immune system in the early stages of GvHD initiation. Danger-associated molecular patterns released from the intracellular space as well as from the extracellular matrix activate antigen-presenting cells and set pro-inflammatory pathways in motion. This review gives an overview about danger signals representing therapeutic targets with a clinical perspective with a particular focus on extracellular nucleotides and ectonucleotidases. Topics: Acute Disease; Animals; Antigens, CD; Apyrase; Graft vs Host Disease; Hematologic Neoplasms; Hematopoietic Stem Cell Transplantation; Humans; Immunity, Innate; Pyrophosphatases; Receptors, Pattern Recognition; T-Lymphocytes; Transplantation, Homologous | 2016 |
8 other study(ies) available for apyrase and Acute-Disease
Article | Year |
---|---|
Extracellular release of ATP promotes systemic inflammation during acute pancreatitis.
In the current study, we explored the role of extracellular ATP (eATP) in promoting systemic inflammation during development of acute pancreatitis (AP). Release of extracellular (e)ATP was evaluated in plasma and bronchoalveolar lavage fluid (BALF) of mice with experimental acute pancreatitis (AP). Prophylactic intervention using apyrase or suramin was used to understand the role and contribution of eATP in pancreatitis-associated systemic injury. AP of varying severity was induced in C57BL/6 mice using 1-day or 2-day caerulein, caerulein + LPS and l-arginine models. eATP was measured in plasma and BALF. Mice were treated with suramin or apyrase in the caerulein and l-arginine models of AP. Plasma cytokines, lung, and pancreatic myeloperoxidase, and morphometric analysis of pancreatic and lung histology, were used to assess the severity of pancreatitis. Plasma eATP and purinergic 2 (P2) receptors in the pancreas and lungs were significantly elevated in the experimental models of AP. Blocking the effect of eATP by suramin led to reduced levels of plasma IL-6 and TNFα as well as reduced lung, and pancreatic injury. Neutralizing eATP with apyrase reduced systemic injury but did not ameliorate local injury. The results of this study support the role of eATP and P2 receptors in promoting systemic inflammation during AP. Modulating purinergic signaling during AP can be an important therapeutic strategy in controlling systemic inflammation and, thus, systemic inflammatory response syndrome during AP. Topics: Acute Disease; Adenosine Triphosphate; Animals; Apyrase; Arginine; Bronchoalveolar Lavage Fluid; Ceruletide; Cytokines; Inflammation; Lung; Mice; Mice, Inbred C57BL; Pancreas; Pancreatitis; Peroxidase; Receptors, Purinergic; Signal Transduction; Suramin | 2019 |
Tumor Necrosis Factor-producing T-regulatory Cells Are Associated With Severe Liver Injury in Patients With Acute Hepatitis A.
CD4. We analyzed blood samples collected from 63 patients with AHA at the time of hospitalization (and some at later time points) and 19 healthy donors in South Korea. Liver tissues were collected from patients with fulminant AHA during liver transplantation. Peripheral blood mononuclear cells were isolated from whole blood and lymphocytes were isolated from liver tissues and analyzed by flow cytometry. Cytokine production from Treg cells (CD4. A higher proportion of CD4. Treg cells from patients with AHA have altered functions compared with Treg cells from healthy individuals. Treg cells from patients with AHA produce higher levels of TNF, gain features of T-helper 17 cells, and have reduced suppressive activity. The presence of these cells is associated with severe liver injury in patients with AHA. Topics: Acute Disease; Antigens, CD; Apyrase; Case-Control Studies; Cells, Cultured; DNA Methylation; Epigenesis, Genetic; Forkhead Transcription Factors; Hepatitis A; Hepatitis A virus; Host-Pathogen Interactions; Humans; Interleukin-2 Receptor alpha Subunit; Liver; Nuclear Receptor Subfamily 1, Group F, Member 3; Phenotype; Severity of Illness Index; Signal Transduction; T-Lymphocytes, Regulatory; Th17 Cells; Time Factors; Tumor Necrosis Factor-alpha | 2018 |
Evaluation of CD4
Regulatory T cells (Treg) are important in mediating immune tolerance and outcomes of allotransplantation. CD4. CD4 Topics: Acute Disease; Adult; Aged; Allografts; Antigens, CD; Apyrase; Biomarkers; Case-Control Studies; Cell Proliferation; Cells, Cultured; Coculture Techniques; Female; Graft Rejection; Graft Survival; Humans; Immunosuppressive Agents; Interleukin-2 Receptor alpha Subunit; Kidney Failure, Chronic; Kidney Transplantation; Lymphocyte Activation; Male; Middle Aged; Phenotype; Prospective Studies; Risk Factors; T-Lymphocytes, Regulatory; Time Factors; Transplantation Tolerance; Treatment Outcome | 2017 |
A study of the imbalance in B cell-expressed nucleoside triphosphate diphosphohydrolase 1-induced ADP degradation in graft injury during acute antibody-mediated rejection.
To study the effects and mechanisms of the imbalance in B cell-expressed nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1)-induced ADP degradation on graft injury during acute antibody-mediated rejection (AMR).. The acute AMR animal model was established in male NTPDase 1-wild-type Balb/c nude mice. The levels of NTPDase 1 in B cells and NTPDase1 mRNA in grafted skin, changes in platelet activation markers and average platelet velocities were determined by luciferin/luciferase enzymatic, real-time fluorescent quantitative PCR, flow cytometry and inverted microscope. The pathological changes in grafted skin were observed by electron microscopy. The effects of pretreatment with different doses of exogenous NTPDase 1 on platelet activation and graft injury were studied.. The expression of B-cell NTPDase 1 was significantly increased at 30 min after the induction of acute AMR and restored to baseline levels after 7 days. The levels of NTPDase 1 mRNA in grafted skin were decreased at 30 min after the induction of acute AMR. After the induction of acute AMR, the levels of platelet activation markers increased significantly, whereas the average platelet velocity significantly decreased. After pretreatment with exogenous NTPDase 1, the expression of platelet activation markers significantly decreased, the average velocity of platelets increased significantly, and the necrosis of grafted skin and inflammatory reaction significantly reduced.. An imbalance in the NTPDase 1-induced degradation of extracellular ADP may be a major cause of graft injury in acute AMR. Pretreatment with exogenous NTPDase 1 may effectively inhibit platelet activation and protect grafted skin. Topics: Acute Disease; Adenosine Diphosphate; Animals; Antigens, CD; Apyrase; B-Lymphocytes; Disease Models, Animal; Graft Rejection; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Platelet Activation; RNA, Messenger; Skin Transplantation | 2012 |
Antibody reactivity against potato apyrase, a protein that shares epitopes with Schistosoma mansoni ATP diphosphohydrolase isoforms, in acute and chronically infected mice, after chemotherapy and reinfection.
Schistosoma mansoni ATP diphosphohydrolase isoforms and potato apyrase share conserved epitopes. By enzyme-linked immunosorbent assays, elevated levels of IgM, IgG2a and IgG1 antibody reactivity against potato apyrase were observed in S. mansoni-infected BALB/c mice during the acute phase of infection, while only IgM and IgG1 antibody reactivity levels maintained elevated during the chronic phase of infection. Antibody reactivity against potato apyrase was monitored over an 11-month period in chronically-infected mice treated with oxamniquine. Eleven months later, the level of seropositive IgM decreased significantly (approximately 30%) compared to the level found in untreated, infected mice. The level of seropositive IgG1 decreased significantly four months after treatment (MAT) (61%) and remained at this level even after 11 months. The IgG2a reactivity against potato apyrase, although unchanged during chronic phase to 11 MAT, appeared elevated again in re-infected mice suggesting a response similar to that found during the acute phase. BALB/c mouse polyclonal anti-potato apyrase IgG reacted with soluble egg antigens probably due to the recognition of parasite ATP diphosphohydrolase. This study, for the first time, showed that the IgG2a antibody from S. mansoni-infected BALB mice cross-reacts with potato apyrase and the level of IgG2a in infected mice differentiates disease phases. The results also suggest that different conserved-epitopes contribute to the immune response in schistosomiasis. Topics: Acute Disease; Animals; Anthelmintics; Antibodies, Helminth; Antigens, Helminth; Apyrase; Chronic Disease; Cross Reactions; Enzyme-Linked Immunosorbent Assay; Female; Immunoglobulin G; Immunoglobulin M; Mice; Mice, Inbred BALB C; Oxamniquine; Schistosoma mansoni; Schistosomiasis mansoni; Solanum tuberosum | 2010 |
Vascular stasis, intestinal hemorrhage, and heightened vascular permeability complicate acute portal hypertension in cd39-null mice.
Vasoactive factors that regulate splanchnic hemodynamics include nitric oxide, catecholamines, and possibly extracellular nucleosides/nucleotides (adenosine, ATP). CD39/ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1) is the major vascular ectonucleotidase that hydrolyzes extracellular nucleotides. CD39 activity may be modulated by vascular injury, inflammation, and altered oxygen tension. Altered Cd39 expression by the murine hepatosplanchnic vasculature may impact hemodynamics and portal hypertension (PHT) in vivo. We noted that basal portal pressures (PPs) were comparable in wild-type and Cd39-null mice (n = 9). ATP infusions resulted in increments in PP in wild-type mice, but, in contrast, this significantly decreased in Cd39-null mice (n = 9) post-ATP in a nitric oxide-dependent manner. We then studied Cd39/NTPDase1 deletion in the regulation of portal hemodynamics, vascular integrity, and intestinal permeability in a murine model of PHT. Partial portal vein ligation (PPVL) was performed in Cd39-null (n = 44) and wild-type (n = 23) mice. Sequential measurements obtained after PPVL were indicative of comparable levels of PHT (ranges 14-29 mmHg) in both groups. There was one death in the wild-type group and eight in the Cd39-null group from intestinal bleeding (P = 0.024). Circulatory stasis in the absence of overt portal vein thrombosis, portal congestion, intestinal hemorrhage, and increased permeability were evident in all surviving Cd39-null mice. Deletion of Cd39 results in deleterious outcomes post-PPVL that are associated with significant microcirculatory derangements and major intestinal congestion with hemorrhage mimicking acute mesenteric occlusion. Absent Cd39/NTPDase1 and decreased generation of adenosine in the splanchnic circulation cause heightened vascular permeability and gastrointestinal hemorrhage in PPVL. Topics: Acute Disease; Adenosine; Adenosine Triphosphate; Animals; Antigens, CD; Apyrase; Capillary Permeability; Constriction, Pathologic; Disease Models, Animal; Gastrointestinal Hemorrhage; Hypertension, Portal; Ligation; Mice; Mice, Inbred C57BL; Mice, Knockout; Microcirculation; Nitric Oxide; Portal Pressure; Portal Vein; Splanchnic Circulation; Time Factors | 2009 |
ATP diphosphohydrolase in human platelets from patients with coronary arteries heart disease.
ATP diphosphohydrolase is an enzyme described in platelets and may be related to the control of ADP-dependent platelet aggregation. Platelet aggregation in atherosclerotic coronary arteries, and the release of platelet-derived factors, play an important role in coronary artery disease syndromes. In this study, we determined the activity of ATP diphosphohydrolase in platelets from patients with chronic and acute coronary artery disease syndromes and healthy persons. The following groups were studied: healthy persons (group I), patients with chronic heart disease (group II) and acute heart disease (group III). Results did not demonstrate differences between the groups studied. The control group demonstrated a lower range of enzyme activity. The patients from groups II and III had ingested drugs with actions upon the cardiovascular system and the effect, in vitro, of these drugs upon the ATP diphosphohydrolase activity in human platelets was also investigated. The in vitro experiments demonstrated that 2.0 mM acetylsalicylic acid inhibited ATP hydrolysis by human platelets by approximately 55%. Significant correlation was observed between ADP hydrolysis and glucose blood levels in the control group and between ATP hydrolysis and triglycerides in the group II. These results contribute to our understanding of a possible relationship between ATP diphosphohydrolase and thrombogenesis. Topics: Acute Disease; Adult; Aged; Apyrase; Aspirin; Blood Glucose; Blood Platelets; Case-Control Studies; Chronic Disease; Coronary Artery Disease; Female; Humans; Male; Middle Aged; Thrombosis; Triglycerides | 2003 |
Assay, kinetics and properties of plasma adenosine diphosphatase. The relationship to acid and alkaline phosphatase and variations in disease.
A rapid radioassay was used to characterise the adenosine diphosphatase (ADPase) activities in human plasma. There was a major peak at pH 9.3, 80% of whose activity was attributable to non-specific alkaline phosphatase, with the remaining 20% probably due to a specific ADPase. There was also a small peak of ADPase activity at pH 4.0. Inhibitor and chromatographic studies showed that whilst much of this activity was attributable to non-specific acid phosphatase, there was a discrete acid ADPase. Assays of plasma ADPase activities in vascular disorders, including myocardial infarction, peripheral vascular disease and diabetes mellitus, reveal no alterations from control values. Activities of alkaline ADPase were elevated in both chronic and acute liver failure. Acid ADPase was also increased in chronic liver disease and it is suggested that alterations in ADPase activities in liver disorders may contribute to the haemostatic problems observed in these patients. Topics: Acid Phosphatase; Acute Disease; Alkaline Phosphatase; Apyrase; Chromatography, Gel; Chronic Disease; Humans; Hydrogen-Ion Concentration; Kinetics; Liver Diseases; Myocardial Infarction; Phosphoric Monoester Hydrolases; Vascular Diseases | 1982 |