apremilast and Vomiting

apremilast has been researched along with Vomiting* in 3 studies

Reviews

1 review(s) available for apremilast and Vomiting

ArticleYear
Advances in the Development of Phosphodiesterase-4 Inhibitors.
    Journal of medicinal chemistry, 2020, 10-08, Volume: 63, Issue:19

    Cyclic nucleotide phosphodiesterase 4 (PDE4) specifically hydrolyzes cyclic adenosine monophosphate (cAMP) and plays vital roles in biological processes such as cancer development. To date, PDE4 inhibitors have been widely studied as therapeutics for the treatment of various diseases such as chronic obstructive pulmonary disease, and many of them have progressed to clinical trials or have been approved as drugs. Herein, we review the advances in the development of PDE4 inhibitors in the past decade and will focus on their pharmacophores, PDE4 subfamily selectivity, and therapeutic potential. Hopefully, this analysis will lead to a strategy for development of novel therapeutics targeting PDE4.

    Topics: Animals; Cyclic Nucleotide Phosphodiesterases, Type 4; Drug Development; Drug Discovery; Humans; Molecular Structure; Phosphodiesterase 4 Inhibitors; Protein Conformation; Quinolones; Vomiting

2020

Other Studies

2 other study(ies) available for apremilast and Vomiting

ArticleYear
Discovery and Optimization of α-Mangostin Derivatives as Novel PDE4 Inhibitors for the Treatment of Vascular Dementia.
    Journal of medicinal chemistry, 2020, 03-26, Volume: 63, Issue:6

    Topics: Aminopyridines; Animals; Benzamides; Cyclic Nucleotide Phosphodiesterases, Type 4; Cyclopropanes; Dementia, Vascular; Dogs; Drug Design; Humans; Male; Mice, Inbred C57BL; Molecular Structure; Phosphodiesterase 4 Inhibitors; Protein Binding; Rolipram; Structure-Activity Relationship; Vomiting; Xanthones

2020
Apremilast is a selective PDE4 inhibitor with regulatory effects on innate immunity.
    Cellular signalling, 2014, Volume: 26, Issue:9

    Apremilast, an oral small molecule inhibitor of phosphodiesterase 4 (PDE4), is in development for chronic inflammatory disorders, and has shown efficacy in psoriasis, psoriatic arthropathies, and Behçet's syndrome. In March 2014, the US Food and Drug Administration approved apremilast for the treatment of adult patients with active psoriatic arthritis. The properties of apremilast were evaluated to determine its specificity, effects on intracellular signaling, gene and protein expression, and in vivo pharmacology using models of innate and adaptive immunity. Apremilast inhibited PDE4 isoforms from all four sub-families (A1A, B1, B2, C1, and D2), with IC50 values in the range of 10 to 100 nM. Apremilast did not significantly inhibit other PDEs, kinases, enzymes, or receptors. While both apremilast and thalidomide share a phthalimide ring structure, apremilast lacks the glutarimide ring and thus fails to bind to cereblon, the target of thalidomide action. In monocytes and T cells, apremilast elevated intracellular cAMP and induced phosphorylation of the protein kinase A substrates CREB and activating transcription factor-1 while inhibiting NF-κB transcriptional activity, resulting in both up- and down-regulation of several genes induced via TLR4. Apremilast reduced interferon-α production by plasmacytoid dendritic cells and inhibited T-cell cytokine production, but had little effect on B-cell immunoglobulin secretion. In a transgenic T-cell and B-cell transfer murine model, apremilast (5mg/kg/day p.o.) did not affect clonal expansion of either T or B cells and had little or no effect on their expression of activation markers. The effect of apremilast on innate immunity was tested in the ferret lung neutrophilia model, which allows monitoring of the known PDE4 inhibitor gastrointestinal side effects (nausea and vomiting). Apremilast significantly inhibited lung neutrophilia at 1mg/kg, but did not induce significant emetic reflexes at doses <30 mg/kg. Overall, the pharmacological effects of apremilast are consistent with those of a targeted PDE4 inhibitor, with selective effects on innate immune responses and a wide therapeutic index compared to its gastrointestinal side effects.

    Topics: Adaptive Immunity; Animals; B-Lymphocytes; Cell Line; Cyclic AMP; Cyclic Nucleotide Phosphodiesterases, Type 4; Cytokines; Disease Models, Animal; Female; Ferrets; Humans; Immunity, Innate; Jurkat Cells; Lung Diseases; Male; Mice; Mice, Transgenic; Phosphodiesterase 4 Inhibitors; Protein Binding; T-Lymphocytes; Thalidomide; Vomiting

2014