apr-246 has been researched along with Multiple-Myeloma* in 3 studies
3 other study(ies) available for apr-246 and Multiple-Myeloma
Article | Year |
---|---|
MiRNA-29a as a tumor suppressor mediates PRIMA-1Met-induced anti-myeloma activity by targeting c-Myc.
The proto-oncogene c-Myc plays substantial role in multiple myeloma (MM) pathogenesis and is considered a potential drug target. Here we provide evidence of a novel mechanism for PRIMA-1Met, a small molecule with anti-tumor activity in phase I/II clinical trial, showing that PRIMA-1Met induces apoptosis in MM cells by suppressing c-Myc and upregulating miRNA-29a. Our study further demonstrates that miRNA-29a functions as a tumor suppressor which targets c-Myc. The baseline expression of miR-29a was significantly lower in MM cell lines and MM patient samples compared to normal hematopoietic cells. In addition, ectopic expression of miRNA-29a or exposure to PRIMA-1Met reduced cell proliferation and induced apoptosis in MM cells. On the other hand, overexpression of c-Myc at least partially reverted the inhibitory effects of PRIMA-1Met or miRNA-29a overexpression suggesting the miRNA-29a/c-Myc axis mediates anti-myeloma effects of PRIMA-1Met. Importantly, intratumor delivery of miRNA-29a mimics induced regression of tumors in mouse xenograft model of MM and this effect synergized with PRIMA-1Met. Our study indicates that miRNA-29a is a tumor suppressor that plays an important role during PRIMA-1Met-induced apoptotic signaling by targeting c-Myc and provides the basis for novel therapeutic strategies using miRNA-29a mimics combined with PRIMA-1Met in MM. Topics: Animals; Antineoplastic Agents; Apoptosis; Blotting, Western; Case-Control Studies; Cell Proliferation; Combined Modality Therapy; Gene Expression Regulation, Neoplastic; Genes, Tumor Suppressor; Hematopoietic Stem Cells; Humans; Immunoenzyme Techniques; Mice; Mice, SCID; MicroRNAs; Multiple Myeloma; Proto-Oncogene Mas; Proto-Oncogene Proteins c-myc; Quinuclidines; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2016 |
PRIMA-1Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance.
The aim of this study was to assess the efficiency of p53 reactivation and induction of massive apoptosis (PRIMA-1(Met)) in inducing myeloma cell death, using 27 human myeloma cell lines (HMCLs) and 23 primary samples. Measuring the lethal dose (LD50) of HMCLs revealed that HMCLs displayed heterogeneous sensitivity, with an LD50 ranging from 4 μM to more than 200 μM. The sensitivity of HMCLs did not correlate with myeloma genomic heterogeneity or TP53 status, and PRIMA-1(Met) did not induce or increase expression of the p53 target genes CDKN1A or TNFRSF10B/DR5. However, PRIMA-1(Met) increased expression of NOXA in a p53-independent manner, and NOXA silencing decreased PRIMA1(Met)-induced cell death. PRIMA-1(Met) depleted glutathione (GSH) content and induced reactive oxygen species production. The expression of GSH synthetase correlated with PRIMA-1(Met) LD50 values, and we showed that a GSH decrease mediated by GSH synthetase silencing or by and L-buthionine sulphoximine, an irreversible inhibitor of γ-glutamylcysteine synthetase, increased PRIMA-1(Met)-induced cell death and overcame PRIMA-1(Met) resistance. PRIMA-1(Met) (10 μM) induced cell death in 65% of primary cells independent of the presence of del17p; did not increase DR5 expression, arguing against an activation of p53 pathway; and synergized with L-buthionine sulphoximine in all samples. Finally, we showed in mouse TP53(neg) JJN3-xenograft model that PRIMA-1(Met) inhibited myeloma growth and synergized with L-buthionine sulphoximine in vivo. Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Death; Cells, Cultured; Female; Glutathione; Humans; Mice; Mice, SCID; Multiple Myeloma; Quinuclidines; Reactive Oxygen Species; Signal Transduction; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assays | 2014 |
PRIMA-1Met/APR-246 displays high antitumor activity in multiple myeloma by induction of p73 and Noxa.
Targeting p53 by the small-molecule PRIMA-1(Met)/APR-246 has shown promising preclinical activity in various cancer types. However, the mechanism of PRIMA-1(Met)-induced apoptosis is not completely understood and its effect on multiple myeloma cells is unknown. In this study, we evaluated antitumor effect of PRIMA-1(Met) alone or its combination with current antimyeloma agents in multiple myeloma cell lines, patient samples, and a mouse xenograft model. Results of our study showed that PRIMA-1(Met) decreased the viability of multiple myeloma cells irrespective of p53 status, with limited cytotoxicity toward normal hematopoietic cells. Treatment of multiple myeloma cells with PRIMA-1(Met) resulted in induction of apoptosis, inhibition of colony formation, and migration. PRIMA-1(Met) restored wild-type conformation of mutant p53 and induced activation of p73 upregulating Noxa and downregulating Mcl-1 without significant modulation of p53 level. siRNA-mediated silencing of p53 showed a little effect on apoptotic response of PRIMA-1(Met), whereas knockdown of p73 led to substantial attenuation of apoptotic activity in multiple myeloma cells, indicating that PRIMA-1(Met)-induced apoptosis is, at least in part, p73-dependent. Importantly, PRIMA-1(Met) delayed tumor growth and prolonged survival of mice bearing multiple myeloma tumor. Furthermore, combined treatment of PRIMA-1(Met) with dexamethasone or doxorubicin displayed synergistic effects in both multiple myeloma cell lines and primary multiple myeloma samples. Consistent with our in vitro observations, cotreatment with PRIMA-1(Met) and dexamethasone resulted in enhanced antitumor activity in vivo. Our study for the first time shows antimyeloma activity of PRIMA-1(Met) and provides the rationale for its clinical evaluation in patients with multiple myeloma, including the high-risk group with p53 mutation/deletion. Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Aza Compounds; Bridged Bicyclo Compounds, Heterocyclic; Cell Line, Tumor; Dexamethasone; DNA-Binding Proteins; Doxorubicin; Gene Expression Regulation, Neoplastic; Humans; Mice; Mice, SCID; Multiple Myeloma; Neoplasms, Experimental; Nuclear Proteins; Proto-Oncogene Proteins c-bcl-2; Quinuclidines; Tumor Protein p73; Tumor Suppressor Proteins; Xenograft Model Antitumor Assays | 2013 |