apr-246 has been researched along with Lung-Neoplasms* in 2 studies
2 other study(ies) available for apr-246 and Lung-Neoplasms
Article | Year |
---|---|
PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53.
Small cell lung cancer (SCLC) is a highly malignant disease with poor prognosis, necessitating the need to develop new and efficient treatment modalities. PRIMA-1(Met) (p53-dependent reactivation of massive apoptosis), also known as APR-246, is a small molecule, which restores tumor suppressor function to mutant p53 and induces cancer cell death in various cancer types. Since p53 is mutated in more than 90% of SCLC, we investigated the ability of PRIMA-1(Met) to induce apoptosis and inhibit tumor growth in SCLC with different p53 mutations.. The therapeutic effect of PRIMA-1(Met)/APR-246 was studied in SCLC cells in vitro using cell viability assay, fluorescence-activated cell-sorting analysis, p53 knockdown studies, and Western blot analyses. The antitumor potential of PRIMA-1(Met)/APR-246 was further evaluated in two different SCLC xenograft models.. PRIMA-1(Met)/APR-246 efficiently inhibited the growth of the SCLC cell lines expressing mutant p53 in vitro and induced apoptosis, associated with increased fraction of cells with fragmented DNA, caspase-3 activation, PARP cleavage, Bax and Noxa upregulation and Bcl-2 downregulation in the cells. The growth suppressive effect of PRIMA-1(Met)/APR-246 was markedly reduced in SCLC cell lines transfected with p53 siRNA, supporting the role of mutant p53 in PRIMA-1(Met)/APR-246-induced cell death. Moreover, in vivo studies showed significant antitumor effects of PRIMA-1(Met) after i.v. injection in SCLC mouse models with no apparent toxicity.. This study is the first to show the potential use of p53-reactivating molecules such as PRIMA-1(Met)/APR-246 for the treatment of SCLC. Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Proliferation; Disease Progression; Genes, p53; Humans; Lung Neoplasms; Male; Mice; Mice, Nude; Mutant Proteins; Quinuclidines; Small Cell Lung Carcinoma; Time Factors; Xenograft Model Antitumor Assays | 2011 |
PRIMA-1(MET) synergizes with cisplatin to induce tumor cell apoptosis.
Mutant p53-carrying tumors are often more resistant to chemotherapeutical drugs. We demonstrate here that the mutant p53-reactivating compound PRIMA-1(MET) acts synergistically with several chemotherapeutic drugs to inhibit tumor cell growth. Combined treatment with cisplatin and PRIMA-1(MET) resulted in a synergistic induction of tumor cell apoptosis and inhibition of human tumor xenograft growth in vivo in SCID mice. The induction of mutant p53 levels by chemotherapeutic drugs is likely to increase the sensitivity of tumor cells to PRIMA-1(MET). Thus, the combination of PRIMA-1(MET) with currently used chemotherapeutic drugs may represent a novel and more efficient therapeutic strategy for treatment of mutant p53-carrying tumors. Topics: Adenocarcinoma; Animals; Apoptosis; Aza Compounds; Bone Neoplasms; Bridged Bicyclo Compounds, Heterocyclic; Carcinoma, Non-Small-Cell Lung; Cisplatin; Drug Interactions; Drug Resistance, Neoplasm; Genes, p53; Humans; Lung Neoplasms; Mice; Mice, SCID; Mutation; Osteosarcoma; Quinuclidines; Transplantation, Heterologous; Tumor Cells, Cultured | 2005 |