apr-246 has been researched along with Adenocarcinoma* in 3 studies
3 other study(ies) available for apr-246 and Adenocarcinoma
Article | Year |
---|---|
Effects of the Mutant TP53 Reactivator APR-246 on Therapeutic Sensitivity of Pancreatic Cancer Cells in the Presence and Absence of WT-TP53.
The TP53 tumor suppressor is mutated in ~75% of pancreatic cancers. The mutant TP53 protein in pancreatic ductal adenocarcinomas (PDAC) promotes tumor growth and metastasis. Attempts have been made to develop molecules that restore at least some of the properties of wild-type (WT) TP53. APR-246 is one such molecule, and it is referred to as a mutant TP53 reactivator. To understand the potential of APR-246 to sensitize PDAC cells to chemotherapy, we introduced a vector encoding WT-TP53 into two PDAC cell lines, one lacking the expression of TP53 (PANC-28) and one with a gain-of-function (GOF) mutant TP53 (MIA-PaCa-2). APR-246 increased drug sensitivity in the cells containing either a WT or mutant TP53 protein with GOF activity, but not in cells that lacked TP53. The introduction of WT-T53 into PANC-28 cells increased their sensitivity to the TP53 reactivator, chemotherapeutic drugs, and signal transduction inhibitors. The addition of WT-TP53 to PDAC cells with GOF TP53 also increased their sensitivity to the drugs and therapeutics, indicating that APR-246 could function in cells with WT-TP53 and GOF TP53. These results highlight the importance of knowledge of the type of TP53 mutation that is present in cancer patients before the administration of drugs which function through the reactivation of TP53. Topics: Adenocarcinoma; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Humans; Pancreatic Neoplasms; Quinuclidines; Tumor Suppressor Protein p53 | 2022 |
APR-246 potently inhibits tumour growth and overcomes chemoresistance in preclinical models of oesophageal adenocarcinoma.
p53 is a critical tumour suppressor and is mutated in 70% of oesophageal adenocarcinomas (OACs), resulting in chemoresistance and poor survival. APR-246 is a first-in-class reactivator of mutant p53 and is currently in clinical trials. In this study, we characterised the activity of APR-246 and its effect on p53 signalling in a large panel of cell line xenograft (CLX) and patient-derived xenograft (PDX) models of OAC.. In vitro response to APR-246 was assessed using clonogenic survival, cell cycle and apoptosis assays. Ectopic expression, gene knockdown and CRISPR/Cas9-mediated knockout studies of mutant p53 were performed to investigate p53-dependent drug effects. p53 signalling was examined using quantitative RT-PCR and western blot. Synergistic interactions between APR-246 and conventional chemotherapies were evaluated in vitro and in vivo using CLX and PDX models.. APR-246 upregulated p53 target genes, inhibited clonogenic survival and induced cell cycle arrest as well as apoptosis in OAC cells harbouring p53 mutations. Sensitivity to APR-246 correlated with cellular levels of mutant p53 protein. Ectopic expression of mutant p53 sensitised p53-null cells to APR-246, while p53 gene knockdown and knockout diminished drug activity. Importantly, APR-246 synergistically enhanced the inhibitory effects of cisplatin and 5-fluorouracil through p53 accumulation. Finally, APR-246 demonstrated potent antitumour activity in CLX and PDX models, and restored chemosensitivity to a cisplatin/5-fluorouracil-resistant xenograft model.. APR-246 has significant antitumour activity in OAC. Given that APR-246 is safe at therapeutic levels our study strongly suggests that APR-246 can be translated into improving the clinical outcomes for OAC patients. Topics: Adenocarcinoma; Animals; Apoptosis; Blotting, Western; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Neoplasm; Esophageal Neoplasms; Gene Expression Regulation, Neoplastic; Immunohistochemistry; Mice; Mice, Knockout; Mutation; Neoplasms, Experimental; Quinuclidines; Reverse Transcriptase Polymerase Chain Reaction; RNA, Neoplasm; Tumor Cells, Cultured; Tumor Suppressor Protein p53 | 2015 |
PRIMA-1(MET) synergizes with cisplatin to induce tumor cell apoptosis.
Mutant p53-carrying tumors are often more resistant to chemotherapeutical drugs. We demonstrate here that the mutant p53-reactivating compound PRIMA-1(MET) acts synergistically with several chemotherapeutic drugs to inhibit tumor cell growth. Combined treatment with cisplatin and PRIMA-1(MET) resulted in a synergistic induction of tumor cell apoptosis and inhibition of human tumor xenograft growth in vivo in SCID mice. The induction of mutant p53 levels by chemotherapeutic drugs is likely to increase the sensitivity of tumor cells to PRIMA-1(MET). Thus, the combination of PRIMA-1(MET) with currently used chemotherapeutic drugs may represent a novel and more efficient therapeutic strategy for treatment of mutant p53-carrying tumors. Topics: Adenocarcinoma; Animals; Apoptosis; Aza Compounds; Bone Neoplasms; Bridged Bicyclo Compounds, Heterocyclic; Carcinoma, Non-Small-Cell Lung; Cisplatin; Drug Interactions; Drug Resistance, Neoplasm; Genes, p53; Humans; Lung Neoplasms; Mice; Mice, SCID; Mutation; Osteosarcoma; Quinuclidines; Transplantation, Heterologous; Tumor Cells, Cultured | 2005 |