aphidicolin and Glioblastoma

aphidicolin has been researched along with Glioblastoma* in 4 studies

Other Studies

4 other study(ies) available for aphidicolin and Glioblastoma

ArticleYear
Temporal differences in DNA replication during the S phase using single fiber analysis of normal human fibroblasts and glioblastoma T98G cells.
    Cell cycle (Georgetown, Tex.), 2009, Oct-01, Volume: 8, Issue:19

    We have recently shown that replication forks pause near origins in normal human fibroblasts (NHF1-hTERT) but not glioblastoma T98G cells. This observation led us to question whether other differences in the replication program may exist between these cell types that may relate to their genetic integrity. To identify differences, we detected immunoflourescently the sequential incorporation of the nucleotide analogs IdU and CldU into replicating DNA at the start of every hour of a synchronized S phase. We then characterized the patterns of labeled replicating DNA tracks and quantified the percentages and lengths of the tracks found at these hourly intervals. From the directionality of labeling in single extended replicating DNA fibers, tracks were categorized as single bidirectional origins, unidirectional elongations, clusters of origins firing in tandem, or merging forks (terminations). Our analysis showed that the start of S phase is enriched in single bidirectional origins in NHF1-hTERT cells, followed by an increase in clustering during mid S phase and an increase in merging forks during late S phase. Early S phase in T98G cells also largely consisted of single bidirectional origin initiations; however, an increase in clustering was delayed until an hour later, and clusters were shorter in mid/late S phase than in NHF1-hTERT cells. The spike in merging forks also did not occur until an hour later in T98G cells. Our observations suggest models to explain the temporal replication of single and clustered origins, and suggest differences in the replication program in a normal and cancer cell line.

    Topics: Aphidicolin; Cell Line, Tumor; DNA; DNA Replication; Fibroblasts; Glioblastoma; Humans; Idoxuridine; Models, Biological; Replication Origin; S Phase; Time Factors

2009
Tumor hypoxia: Impact on gene amplification in glioblastoma.
    International journal of oncology, 2008, Volume: 33, Issue:3

    Gene amplification is frequently found in human glioblastoma but the mechanisms driving amplifications remain to be elucidated. Hypoxia as hallmark of glioblastoma is known to be involved in the induction of fragile sites that are central to gene amplification. We analyzed the potential of hypoxia (pO2 0%) and mini hypoxia (pO2 5%) to induce fragile sites within a homogeneously staining region (HSR) at 12q14-15 in a glioblastoma cell line (TX3868). Treatment of cells by hypoxia or by mini hypoxia induced double minutes (DMs) and caused breakage of the HSR structure at 12q14-15, suggesting a novel hypoxia inducible fragile site on 12q. Treatment with aphidicolin, a known fragile site inducer, indicates that the hypoxia inducible fragile site is a common fragile site. Reintegration of amplified sequences and occurrence of anaphase-bridge-like structures shows that mini hypoxia and hypoxia are able to initiate amplification processes in human glioblastoma cells. Hypoxia as known tumor microenvironment factor is crucial for the development of amplifications in glioblastoma. The identification and characterization of novel common fragile sites induced by hypoxia will improve the understanding of mechanisms underlying amplifications in glioblastoma.

    Topics: Animals; Aphidicolin; Base Sequence; Cell Hypoxia; Chromosome Fragile Sites; Chromosomes, Human, Pair 12; Enzyme Inhibitors; Gene Amplification; Glioblastoma; Humans; Mice; Molecular Sequence Data

2008
Small molecule regulators of autophagy identified by an image-based high-throughput screen.
    Proceedings of the National Academy of Sciences of the United States of America, 2007, Nov-27, Volume: 104, Issue:48

    Autophagy is a lysosome-dependent cellular catabolic mechanism mediating the turnover of intracellular organelles and long-lived proteins. Reduction of autophagy activity has been shown to lead to the accumulation of misfolded proteins in neurons and may be involved in chronic neurodegenerative diseases such as Huntington's disease and Alzheimer's disease. To explore the mechanism of autophagy and identify small molecules that can activate it, we developed a series of high-throughput image-based screens for small-molecule regulators of autophagy. This series of screens allowed us to distinguish compounds that can truly induce autophagic degradation from those that induce the accumulation of autophagosomes as a result of causing cellular damage or blocking downstream lysosomal functions. Our analyses led to the identification of eight compounds that can induce autophagy and promote long-lived protein degradation. Interestingly, seven of eight compounds are FDA-approved drugs for treatment of human diseases. Furthermore, we show that these compounds can reduce the levels of expanded polyglutamine repeats in cultured cells. Our studies suggest the possibility that some of these drugs may be useful for the treatment of Huntington's and other human diseases associated with the accumulation of misfolded proteins.

    Topics: Autophagy; Calcium Channel Blockers; Cell Line, Tumor; Drug Evaluation, Preclinical; Fluspirilene; Glioblastoma; Green Fluorescent Proteins; Humans; Intracellular Membranes; Loperamide; Microtubule-Associated Proteins; Mycotoxins; Peptides; Phagosomes; Phosphatidylinositol Phosphates; Pimozide; Protein Kinases; Recombinant Fusion Proteins; Sirolimus; Small Molecule Libraries; TOR Serine-Threonine Kinases; Trifluoperazine; Zinc Fingers

2007
The role of DNA synthesis inhibition in the cytotoxicity of 2',2'-difluoro-2'-deoxycytidine.
    Cancer chemotherapy and pharmacology, 2003, Volume: 52, Issue:4

    Cytotoxicity from the anticancer drug 2',2'-difluoro-2'-deoxycytidine (dFdCyd) has been correlated with its incorporation into DNA. However, cytotoxicity may also result from inhibition of DNA synthesis, due to either (1) dFdCyd diphosphate-mediated inhibition of ribonucleotide reductase, or (2) direct inhibition of DNA polymerases by the 5'-triphosphate of dFdCyd (dFdCTP). To elucidate the role of DNA synthesis inhibition in the cytotoxicity of dFdCyd, we compared dFdCyd to hydroxyurea (HU), a ribonucleotide reductase inhibitor, and aphidicolin, an inhibitor of DNA polymerases, in the U251 and D54 human glioblastoma cell lines.. Sensitivity to dFdCyd, HU, and aphidicolin were determined using a colony formation assay. The effects of these drugs on DNA synthesis were measured by dual parameter flow cytometry, while the effects on nucleotide pool levels were analyzed by high-performance liquid chromatography.. HU and aphidicolin elicited substantially less cytotoxicity than the multi-log killing with dFdCyd. When used at equitoxic concentrations (24-h IC50 values), dFdCyd and HU decreased purine dNTP pools primarily, but dFdCyd was less effective than HU. dFdCyd had decreased dATP by about 80% after 4-12 h, and required 8-24 h to decrease DNA synthesis by 50%. In contrast, HU rapidly depleted dATP by >98% within 2 h, which resulted in >90% inhibition of DNA synthesis. Aphidicolin at a concentration similar to its Ki values for DNA polymerases (1 microM) decreased DNA synthesis by >70% within 2 h. However, this decreased cell survival by only 10% (U251 cells) and 40% (D54 cells).. These results demonstrate that HU and aphidicolin produced a more rapid and profound inhibition of DNA synthesis than dFdCyd, but resulted in significantly less cytotoxicity. This suggests that inhibition of DNA synthesis accounted for less than one log of the multi-log cytotoxicity observed with dFdCyd, whereas incorporation of dFdCTP into DNA is a more lethal event.

    Topics: Antineoplastic Agents; Aphidicolin; Brain Neoplasms; Cell Line, Tumor; Cell Survival; Chromatography, High Pressure Liquid; Deoxycytidine; DNA, Neoplasm; Enzyme Inhibitors; Gemcitabine; Glioblastoma; Humans; Hydroxyurea; Nucleic Acid Synthesis Inhibitors; Pyrimidine Nucleosides; Ribonucleotide Reductases

2003