aphidicolin and Disease-Models--Animal

aphidicolin has been researched along with Disease-Models--Animal* in 3 studies

Reviews

1 review(s) available for aphidicolin and Disease-Models--Animal

ArticleYear
Toward a Cancer Drug of Fungal Origin.
    Medicinal research reviews, 2015, Volume: 35, Issue:5

    Although fungi produce highly structurally diverse metabolites, many of which have served as excellent sources of pharmaceuticals, no fungi-derived agent has been approved as a cancer drug so far. This is despite a tremendous amount of research being aimed at the identification of fungal metabolites with promising anticancer activities. This review discusses the results of clinical testing of fungal metabolites and their synthetic derivatives, with the goal to evaluate how far we are from an approved cancer drug of fungal origin. Also, because in vivo studies in animal models are predictive of the efficacy and toxicity of a given compound in a clinical situation, literature describing animal cancer testing of compounds of fungal origin is reviewed as well. Agents showing the potential to advance to clinical trials are also identified. Finally, the technological challenges involved in the exploitation of fungal biodiversity and procurement of sufficient quantities of clinical candidates are discussed, and potential solutions that could be pursued by researchers are highlighted.

    Topics: Androstadienes; Animals; Antineoplastic Agents; Aphidicolin; Biological Products; Clinical Trials as Topic; Cyclohexanes; Diketopiperazines; Disease Models, Animal; Drug Design; Drug Resistance, Neoplasm; Fatty Acids, Unsaturated; Female; Fungi; Humans; Macrolides; Male; Mice; Neoplasms; Polycyclic Sesquiterpenes; Sesquiterpenes; Trichothecenes; Wortmannin

2015

Other Studies

2 other study(ies) available for aphidicolin and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Antitumor activity and biochemical effects of aphidicolin glycinate (NSC 303812) alone and in combination with cisplatin in vivo.
    Cancer research, 1994, Feb-01, Volume: 54, Issue:3

    Aphidicolin, an inhibitor of DNA polymerases alpha and delta, is cytotoxic in vitro against tumor cells. The poor solubility of aphidicolin has led to the development of aphidicolin glycinate (AG; NSC 303812), a water soluble ester currently in early clinical trials. The antitumor activity of AG was investigated in a series of transplantable murine tumors in vivo. The drug demonstrated activity against the i.p. implanted B16 melanoma, producing maximum increased life spans of 75% following i.p. administration every 3 h for three doses on days 1-9. Treatment schedules involving both single injections per day on days 1-9 and multiple injections per day on days 1, 5, and 9 were less effective, indicating that this antitumor activity is schedule dependent. Similarly, greater activity was observed against the i.p. M5076 sarcoma when three daily injections were given on days 1-9 (57% increased life span) than with a single injection either on days 1-9 (36% increased life span) or on days 1, 5, 9, and 13 (inactive). Further scheduling studies in the s.c. M5076 sarcoma model showed that a 7-day infusion was superior to both a 24-h infusion and a 7-day course of three bolus treatments per day. On the assumption that DNA polymerase inhibition is the basis for this antitumor activity, inhibition of DNA synthesis in BALB/c x DBA/2 F1 mice was investigated by measuring incorporation of [3H]thymidine (20 microCi, i.v.) into DNA of spleen and jejunum. At 2 h after administration of AG, inhibition of DNA synthesis was dose dependent (median inhibitory dose, 60 mg/kg in both tissues) and was > 99% at 300 mg/kg. The inhibition was rapid in onset; AG (100 mg/kg i.p.) produced maximal (> 98%) inhibition in both tissues at 30 min. Recovery occurred in the intestine within 16 h; in spleen recovery was delayed to 24 h, and was followed by a rebound incorporation at 48 h (203%). A comparison of the inhibition of thymidine incorporation in tumor cells (B16 melanoma and P388 leukemia) and normal jejunum revealed no significant differences in the extent of inhibition or the rapidity of recovery in these tissues. The rapid recovery of DNA synthesis inhibition supports the use of prolonged infusion schedules in clinical trials, but the lack of evidence of selectivity for tumor cells suggests that AG may be of limited therapeutic value as a single agent. Thus, we evaluated AG in combination with cisplatin in an in vivo model of cisplatin refractory human ovarian cancer.(ABSTRACT TRUNC

    Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Aphidicolin; Cisplatin; Disease Models, Animal; DNA Repair; DNA-Directed DNA Polymerase; Drug Administration Schedule; Drug Resistance; Female; Humans; Mice; Mice, Inbred BALB C; Mice, Inbred DBA; Neoplasms, Experimental; Nucleic Acid Synthesis Inhibitors; Ovarian Neoplasms

1994