ap20187 has been researched along with Alopecia* in 1 studies
1 other study(ies) available for ap20187 and Alopecia
Article | Year |
---|---|
Generating mouse models of degenerative diseases using Cre/lox-mediated in vivo mosaic cell ablation.
Most degenerative diseases begin with a gradual loss of specific cell types before reaching a threshold for symptomatic onset. However, the endogenous regenerative capacities of different tissues are difficult to study, because of the limitations of models for early stages of cell loss. Therefore, we generated a transgenic mouse line (Mos-iCsp3) in which a lox-mismatched Cre/lox cassette can be activated to produce a drug-regulated dimerizable caspase-3. Tissue-restricted Cre expression yielded stochastic Casp3 expression, randomly ablating a subset of specific cell types in a defined domain. The limited and mosaic cell loss led to distinct responses in 3 different tissues targeted using respective Cre mice: reversible, impaired glucose tolerance with normoglycemia in pancreatic β cells; wound healing and irreversible hair loss in the skin; and permanent moderate deafness due to the loss of auditory hair cells in the inner ear. These mice will be important for assessing the repair capacities of tissues and the potential effectiveness of new regenerative therapies. Topics: Alopecia; Animals; Apoptosis; Caspase 3; Cell Lineage; Dimerization; Disease Models, Animal; Epidermis; Gene Expression Regulation; Gene Knockdown Techniques; Genes, Transgenic, Suicide; Glucose Intolerance; Hair Cells, Auditory, Inner; Hearing Loss, Bilateral; Hearing Loss, Sensorineural; Homeodomain Proteins; Insulin; Islets of Langerhans; Keratin-14; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mosaicism; Organ Specificity; Phenotype; Tacrolimus; Transcription Factor Brn-3C; Transgenes; Wound Healing | 2011 |