ants and Starvation

ants has been researched along with Starvation* in 6 studies

Other Studies

6 other study(ies) available for ants and Starvation

ArticleYear
Different lethal treatments induce changes in piperidine (1,1'-(1,2-ethanediyl)bis-) in the epidermal compounds of red imported fire ants and affect corpse-removal behavior.
    Ecotoxicology and environmental safety, 2020, Volume: 194

    Corpse-removal behavior of the red imported fire ant (RIFA) and the effects of lethal substances on RIFA signal communication were investigated in this study. The RIFA corpses, obtained through freezing, ether, 0.25 mg/L thiamethoxam, and starvation to death treatments, and naturally dead red fire ants were subjected to gas chromatography-mass spectrometry to identify the cuticular hydrocarbon profiles that had an effect on the corpse-removal behavior. The results showed that lethal toxic substances altered the epidermal compounds of RIFA and affected their corpse-removal behavior. Lethal toxic substances increased the number of worker touches with corpses and identification time of corpses. In addition, the content of piperidine (1,1'-(1,2-ethanediyl)bis-) on the surface of the corpse was different following the various treatments. Contamination with toxic substances resulted in the increased secretion of piperidine and led to increased identification time of corpses, number of touch with corpses, and total time for removal of corpses. Piperidine content was higher under conditions of natural death (4.67 ± 0.55%) and with thiamethoxam (10.43 ± 0.78%), freezing (0.83 ± 0.25%), and ether treatment (12.50 ± 0.70%) than under starvation treatment (0). The higher content of piperidine led to a longer number of touches with corpses and identification time. Piperidine compounds may be an element in warning information, which could affect the occurrence of different corpse-removal behaviors.

    Topics: Animals; Ants; Behavior, Animal; Cadaver; Epidermis; Freezing; Gas Chromatography-Mass Spectrometry; Insecticides; Piperidines; Social Behavior; Starvation; Thiamethoxam

2020
Behaviours indicating cannibalistic necrophagy in ants are modulated by the perception of pathogen infection level.
    Scientific reports, 2020, 10-21, Volume: 10, Issue:1

    Cannibalistic necrophagy is rarely observed in social hymenopterans, although a lack of food could easily favour such behaviour. One of the main supposed reasons for the rarity of necrophagy is that eating of nestmate corpses carries the risk of rapid spread of pathogens or parasites. Here we present an experimental laboratory study on behaviour indicating consumption of nestmate corpses in the ant Formica polyctena. We examined whether starvation and the fungal infection level of the corpses affects the occurrence of cannibalistic necrophagy. Our results showed that the ants distinguished between corpses of different types and with different levels of infection risk, adjusting their behaviour accordingly. The frequency of behaviours indicating cannibalistic necrophagy increased during starvation, although these behaviours seem to be fairly common in F. polyctena even in the presence of other food sources. The occurrence and significance of cannibalistic necrophagy deserve further research because, in addition to providing additional food, it may be part of the hygienic behaviour repertoire. The ability to detect infections and handle pathogens are important behavioural adaptations for social insects, crucial for the fitness of both individual workers and the entire colony.

    Topics: Adaptation, Psychological; Animals; Ants; Behavior, Animal; Cadaver; Cannibalism; Health Behavior; Perception; Social Behavior; Starvation

2020
Effects of desiccation and starvation on thermal tolerance and the heat-shock response in forest ants.
    Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, 2017, Volume: 187, Issue:8

    Temperature increases associated with global climate change are likely to be accompanied by additional environmental stressors such as desiccation and food limitation, which may alter how temperature impacts organismal performance. To investigate how interactions between stressors influence thermal tolerance in the common forest ant, Aphaenogaster picea, we compared the thermal resistance of workers to heat shock with and without pre-exposure to desiccation or starvation stress. Knockdown (KD) time at 40.5 °C of desiccated ants was reduced 6% compared to controls, although longer exposure to desiccation did not further reduce thermal tolerance. Starvation, in contrast, had an increasingly severe effect on thermal tolerance: at 21 days, average KD time of starved ants was reduced by 65% compared to controls. To test whether reduction in thermal tolerance results from impairment of the heat-shock response, we measured basal gene expression and transcriptional induction of two heat-shock proteins (hsp70 and hsp40) in treated and control ants. We found no evidence that either stressor impaired the Hsp response: both desiccation and starvation slightly increased basal Hsp expression under severe stress conditions and did not affect the magnitude of induction under heat shock. These results suggest that the co-occurrence of multiple environmental stressors predicted by climate change models may make populations more vulnerable to future warming than is suggested by the results of single-factor heating experiments.

    Topics: Animals; Ants; Climate Change; Dehydration; Forests; Heat-Shock Response; Hot Temperature; HSP40 Heat-Shock Proteins; HSP70 Heat-Shock Proteins; Insect Proteins; Starvation; Thermotolerance

2017
Social interactions influence dopamine and octopamine homeostasis in the brain of the ant Formica japonica.
    The Journal of experimental biology, 2011, May-15, Volume: 214, Issue:Pt 10

    In ants, including Formica japonica, trophallaxis and grooming are typical social behaviors shared among nestmates. After depriving ants of either food or nestmates and then providing them with either food or nestmates, a behavioral change in type and frequency of social interactions was observed. We hypothesized that starvation and isolation affected levels of brain biogenic amines including dopamine (DA) and octopamine (OA) - neuromediators modifying various insect behaviors - and tested the relationship between brain biogenic amines and social behaviors of stressed ants. Ants starved for 7 days contained lower brain DA levels and they did not perform trophallaxis toward nestmates. Feeding starved ants sucrose solution re-established trophallaxis but not brain DA levels. The performance of trophallaxis induced recovery of brain DA content to the level of untreated ants. Ants that were isolated for 2 days displayed markedly increased OA levels, which following nestmate interactions, returned to levels similar to those of control (non-isolated) ants and ants isolated for 1 h. We conclude that: (1) starvation reduced brain DA level but had no significant effect on brain OA (trophallaxis recovered the brain DA levels), and (2) isolation increased brain OA level but had no effect on brain DA (trophallaxis and grooming events recovered the brain OA levels). We suggest that social interactions with nestmates influenced brain biogenic amine homeostasis in stressed F. japonica.

    Topics: Analysis of Variance; Animals; Ants; Brain; Chromatography, High Pressure Liquid; Dopamine; Homeostasis; Japan; Observation; Octopamine; Social Behavior; Starvation; Statistics, Nonparametric

2011
Nectar intake rate is modulated by changes in sucking pump activity according to colony starvation in carpenter ants.
    Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 2008, Volume: 194, Issue:5

    Dynamics of fluid feeding has been deeply studied in insects. However, the ability to vary the nectar-intake rate depending only on the carbohydrate deprivation has been clearly demonstrated only in Camponotus mus ants. When insect morphometry and fluid properties remain constant, changes in intake rate could only be attributed to variations in sucking pump activity. Previous records of the electrical activity generated during feeding in C. mus have revealed two different signal patterns: the regular (RP, frequencies: 2-5 Hz) and the irregular (IP, frequencies: 7-12 Hz). This work studies the mechanism underlying food intake-rate modulation in ants by analysing whether these patterns are involved. Behaviour and electrical activity generated by ants at different starvation levels were analysed during feeding on sucrose solutions. Ants were able to modulate the intake rate for a variety of sucrose concentrations (10, 40 and 60%w/w). The IP only occurred for 60% of solutions and its presence did not affect the intake rate. However, during the RP generated under the starved state, we found frequencies up to 7.5 Hz. RP frequencies positively correlated with the intake-rate for all sucrose concentrations. Hence, intake-rate modulation according to sugar deprivation is mainly achieved by the ant's ability to vary the pumping frequency.

    Topics: Animals; Ants; Drinking Behavior; Electrophysiology; Feeding Behavior; Starvation; Sucking Behavior

2008
Starvation drives a threshold triggering communication.
    The Journal of experimental biology, 2006, Volume: 209, Issue:Pt 21

    The decision for an ant forager to launch recruitment is governed by an internal response threshold. Here, we demonstrate that this threshold (the desired volume) triggering trail-laying increases under starvation. As a consequence, highly starved foragers lay a recruitment trail and bring back to the nest higher quantities of food from large unlimited resources. In contrast, when the volume of the food source is under their crop capacity, the percentage of trail-communicating foragers is lower following a prolonged period of starvation. Such starvation-dependent changes in the "desired volume" threshold explain how ants optimize recruitment and select liquid food resources in order to prevent collective exploitation of low profitability.

    Topics: Animal Communication; Animals; Ants; Aphids; Cooperative Behavior; Feeding Behavior; Food; Solutions; Starvation; Sucrose; Symbiosis

2006