ants and Parkinsonian-Disorders

ants has been researched along with Parkinsonian-Disorders* in 1 studies

Other Studies

1 other study(ies) available for ants and Parkinsonian-Disorders

ArticleYear
Tanshinone I selectively suppresses pro-inflammatory genes expression in activated microglia and prevents nigrostriatal dopaminergic neurodegeneration in a mouse model of Parkinson's disease.
    Journal of ethnopharmacology, 2015, Apr-22, Volume: 164

    Radix Salviae Miltiorrhizae, known as Danshen, is a well-known traditional Chinese herb which has been used extensively for the treatment of various diseases, including cardiovascular and cerebrovascular disease and neurodegenerative diseases for thousands of years. Tanshinone I is one of major bioactive flavonoids of Radix Salviae Miltiorrhizae. Modulation of microglial over-reaction may represent a therapeutic target to alleviate the progression of neurodegenerative diseases. Here, we tested the effect of Tanshinone I on neuro-inflammation and whether it can provide neuroprotection through inhibition of neuro-inflammation.. The effects of Tanshinone I on the production and/or mRNA expression of pro-inflammatory and anti-inflammatory factors in lipopolysaccharide(LPS)-induced BV-2 microglia cells were tested by Griess reaction, enzyme-linked immunosorbent assay (Elisa) or real time polymerase chain reaction. Activation of nuclear factor κ B (NF-κB) was measured by the nuclear translocation p65 and DNA binding activity. A model of Parkinson׳s disease was established by treatment of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6 mice. The effect of Tanshinone I on the behavioral changes, dopamine and its metabolites levels, expression of tyrosine hydroxylase (TH) and IBA-1, production of cytokines in the midbrain were investigated by the rotarod test, high-performance liquid chromatography (HPLC)-ECD, immunohistochemistry and Elisa. 1-methyl-4-phenylpyridinium (MPP+) concentration was tested by HPLC. Liver toxicity was determined by biochemical assay and histochemistry.. We found that the productions and/or expressions of several pro-inflammatory M1 factors such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 were highly suppressed by Tanshinone I in LPS-induced microglia. Interestingly, it did not affect the enhancement of expression of some anti-inflammatory M2 microglia markers, including IL-10, IL-1 receptor antagonist (IL-1Ra) and Cox-2. But it could significantly inhibit LPS-induced granulocyte colony-stimulating factor (G-CSF) expression. Tanshinone I could also inhibit LPS-induced NF-κB activation in microglia. Furthermore, it improved motor functions, normalized striatal neurotransmitters, and provided dopaminergic neuronal protection in MPTP-intoxicated mice. In vivo results also indicated that Tanshinone I could modulate MPTP-induced microglial activation, attenuated the increase of TNF-α, reserved the increase of IL-10 concentrain of MPTP-intoxicated mice. Tanshinone I does not alter MPTP toxic metabolite (MPP+) concentration. Oral administration of Tanshinone I at 10mg/kg daily for 2 weeks did not show liver toxicity.. Tanshinone I selectively suppressed pro-inflammatory M1 genes expression in activated microglia, interestingly, partially reserved anti-inflammatory M2 genes expression. It also could provide neuroprotection in a mouse model of Parkinson׳s disease. These data indicated that Tanshinone I could make the most of the beneficial side and minimize the detrimental side of activated microglia simultaneously, and provide neuroprotection by modulating the immune response of microglia.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Abietanes; Animals; Anti-Inflammatory Agents; Ants; Cell Line; Corpus Striatum; Cyclooxygenase 1; Cyclooxygenase 2; Cytokines; Disease Models, Animal; Gene Expression Regulation; Male; Membrane Proteins; Mice, Inbred C57BL; Microglia; Neuroprotective Agents; NF-kappa B; Nitric Oxide; Parkinsonian Disorders; Phytotherapy; Rotarod Performance Test

2015