antimycin has been researched along with Pain* in 1 studies
1 trial(s) available for antimycin and Pain
Article | Year |
---|---|
Pharmacological Modulation of the Mitochondrial Electron Transport Chain in Paclitaxel-Induced Painful Peripheral Neuropathy.
Paclitaxel is an effective first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Mitochondrial dysfunction and oxidative stress have been implicated in paclitaxel-induced painful neuropathy. Here we show the effects of pharmacological modulation of mitochondrial sites that produce reactive oxygen species using systemic rotenone (complex I inhibitor) or antimycin A (complex III inhibitor) on the maintenance and development of paclitaxel-induced mechanical hypersensitivity in adult male Sprague Dawley rats. The maximally tolerated dose (5 mg/kg) of rotenone inhibited established paclitaxel-induced mechanical hypersensitivity. However, some of these inhibitory effects coincided with decreased motor coordination; 3 mg/kg rotenone also significantly attenuated established paclitaxel-induced mechanical hypersensitivity without any motor impairment. The maximally tolerated dose (.6 mg/kg) of antimycin A reversed established paclitaxel-induced mechanical hypersensitivity without any motor impairment. Seven daily doses of systemic rotenone or antimycin A were given either after paclitaxel administration or before and during paclitaxel administration. Rotenone had no significant effect on the development of paclitaxel-induced mechanical hypersensitivity. However, antimycin A significantly inhibited the development of paclitaxel-induced mechanical hypersensitivity when given before and during paclitaxel administration but had no effect when given after paclitaxel administration. These studies provide further evidence of paclitaxel-evoked mitochondrial dysfunction in vivo, suggesting that complex III activity is instrumental in paclitaxel-induced pain.. This study provides further in vivo evidence that mitochondrial dysfunction is a key contributor to the development and maintenance of chemotherapy-induced painful neuropathy. This work also indicates that selective modulation of the electron transport chain can induce antinociceptive effects in a preclinical model of paclitaxel-induced pain. Topics: Animals; Antimycin A; Antineoplastic Agents, Phytogenic; Disease Models, Animal; Electron Transport; Electron Transport Chain Complex Proteins; Enzyme Inhibitors; Hyperalgesia; Male; Motor Activity; Paclitaxel; Pain; Pain Measurement; Peripheral Nervous System Diseases; Psychomotor Disorders; Rats; Rats, Sprague-Dawley; Rotenone; Single-Blind Method; Time Factors | 2015 |