antileukinate and Sepsis

antileukinate has been researched along with Sepsis* in 2 studies

Other Studies

2 other study(ies) available for antileukinate and Sepsis

ArticleYear
Alpha-chemokine receptor blockade reduces high mobility group box 1 protein-induced lung inflammation and injury and improves survival in sepsis.
    American journal of physiology. Lung cellular and molecular physiology, 2005, Volume: 289, Issue:4

    High mobility group box 1 (HMGB1) protein, a late mediator of lethality in sepsis, can induce acute inflammatory lung injury. Here, we identify the critical role of alpha-chemokine receptors in the HMGB1-induced inflammatory injury and show that alpha-chemokine receptor inhibition increases survival in sepsis, in a clinically relevant time frame. Intratracheal instillation of recombinant HMGB1 induces a neutrophilic leukocytosis, preceded by alveolar accumulation of the alpha-chemokine macrophage inflammatory protein-2 and accompanied by injury and increased inflammatory potential within the air spaces. To investigate the role of alpha-chemokine receptors in the injury, we instilled recombinant HMGB1 (0.5 microg) directly into the lungs and administered a subcutaneous alpha-chemokine receptor inhibitor, Antileukinate (200 microg). alpha-Chemokine receptor blockade reduced HMGB1-induced inflammatory injury (neutrophils: 2.9 +/- 3.2 vs. 8.1 +/- 2.4 x 10(4) cells; total protein: 120 +/- 48 vs. 311 +/- 129 microg/ml; reactive nitrogen species: 2.3 +/- 0.3 vs. 3.5 +/- 1.3 microM; and macrophage migration inhibitory factor: 6.4 +/- 4.2 vs. 37.4 +/- 15.9 ng/ml) within the bronchoalveolar lavage fluid, indicating that HMGB1-induced inflammation and injury are alpha-chemokine mediated. Because HMGB1 can mediate late septic lethality, we administered Antileukinate to septic mice and observed increased survival (from 58% in controls to 89%) even when the inhibitor treatment was initiated 24 h after the induction of sepsis. These data demonstrate that alpha-chemokine receptor inhibition can reduce HMGB1-induced lung injury and lethality in established sepsis and may provide a novel treatment in this devastating disease.

    Topics: Animals; Chemokine CXCL2; Chemokines; Chemokines, CXC; Female; HMGB1 Protein; Mice; Mice, Inbred BALB C; Neutrophils; Oligopeptides; Pneumonia; Pulmonary Alveoli; Receptors, Chemokine; Respiratory Distress Syndrome; Sepsis

2005
CXCR2 inhibition suppresses hemorrhage-induced priming for acute lung injury in mice.
    Journal of leukocyte biology, 2004, Volume: 76, Issue:1

    Polymorphonuclear neutrophil (PMN) extravasation/sequestration in the lung and a dysregulated inflammatory response characterize the pathogenesis of acute lung injury (ALI). Previously, we have shown that hemorrhage (Hem) serves to prime PMN such that subsequent septic challenge [cecal ligation and puncture (CLP)] produces a pathological, inflammatory response and consequent lung injury in mice. Keratinocyte-derived chemokine (KC) and macrophage inflammatory protein-2 (MIP-2) are murine CXC chemokines found elevated in the lungs and plasma following Hem/CLP and have been reported by others to share a common receptor (CXCR2). Based on these data, we hypothesize that blockade of CXCR2 immediately following Hem would suppress KC and MIP-2 priming of PMN, thereby reducing the inflammatory injury observed following CLP. To assess this, Hem mice (90 min at 35+/-5 mmHg) were randomized to receive 0, 0.4, or 1 mg antileukinate (a hexapeptide inhibitor of CXCRs) in 100 microl phosphate-bufferd saline (PBS)/mouse subcutaneously, immediately following resuscitation (Ringer's lactate-4x drawn blood volume). Twenty-four hours post-Hem, mice were subjected to CLP and killed 24 h later. The results show that blockade of CXCR2 significantly (P<0.05, Tukey's test) reduced PMN influx, lung protein leak, and lung-tissue content of interleukin (IL)-6, KC, and MIP-2 and increased tissue IL-10 levels. Plasma IL-6 was significantly decreased, and IL-10 levels increased in a dose-dependent manner compared with PBS-treated mice. A differential effect was observed in plasma levels of KC and MIP-2. KC showed a significant reduction at the 0.4 mg antileukinate dose. In contrast, plasma MIP-2 was significantly elevated at both doses compared with the PBS-treated controls. Together, these data demonstrate that blockade of CXCR2 signaling attenuates shock-induced priming and ALI observed following Hem and subsequent septic challenge in mice.

    Topics: Animals; Cecum; Chemokines; Disease Models, Animal; Hemorrhage; Immunohistochemistry; Inflammation; Ligation; Mice; Neutrophil Infiltration; Neutrophils; Oligopeptides; Receptors, Interleukin-8B; Respiratory Distress Syndrome; Sepsis

2004