anomalin and Inflammation

anomalin has been researched along with Inflammation* in 4 studies

Other Studies

4 other study(ies) available for anomalin and Inflammation

ArticleYear
Attenuation of neuropathic pain and neuroinflammatory responses by a pyranocoumarin derivative, anomalin in animal and cellular models.
    European journal of pharmacology, 2016, Mar-05, Volume: 774

    The present study investigated the neuropathic pain, anti-neuroinflammatory and neuroprotective properties of a pyranocoumarin derivative (anomalin) in in vivo and in vitro models. An in vivo streptozotocin (STZ)-induced diabetic neuropathic pain model demonstrated that anomalin significantly suppressed neuropathic pain in mice. To identify the molecular mechanism of the anti-neuropathic pain activity of anomalin, sodium-nitroprusside (SNP)-induced neuroinflammation in neuro-2a (N2a) cells was further investigated in signaling pathways. The effects of anomalin against SNP-induced toxicity, nitrite production and related mRNA gene expression (iNOS and COX-2) were considerably reduced by anomalin in the SNP-induced N2a cells. In the molecular signaling pathway, anomalin effectively blocked the SNP-induced activation of the IKKα/β, IκBα, ERK1/2 and p38 MAPK pathways. Furthermore, anomalin remarkably reduced the increase in the SNP-induced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. Additionally, the pro-inflammatory cytokines level was remarkably inhibited by anomalin in high glucose-induced DRG primary neurons and SNP-induced N2a cells. These findings indicate that anomalin has anti-neuropathic pain, anti-neuroinflammatory and neuroprotective effects against STZ-induced diabetic type I neuropathic pain and SNP-induced in neuronal cell models via the inactivation of the NF-κB, Nrf2 and MAPK signaling pathways.

    Topics: Animals; Antioxidants; Cell Line, Tumor; Cold Temperature; Coumarins; Cyclooxygenase 2; Cytokines; Diabetes Mellitus, Type 1; Disease Models, Animal; Ganglia, Spinal; Gene Expression Regulation, Enzymologic; Inflammation; Male; MAP Kinase Signaling System; Mice; Mice, Inbred ICR; Neuralgia; Neurons; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase Type II; Pyranocoumarins; Rats; RNA, Messenger

2016
Mechanism underlying anti-hyperalgesic and anti-allodynic properties of anomalin in both acute and chronic inflammatory pain models in mice through inhibition of NF-κB, MAPKs and CREB signaling cascades.
    European journal of pharmacology, 2013, Oct-15, Volume: 718, Issue:1-3

    The numerous mediators of pain and inflammation are products of injury-induced gene expression that lead to changes in the nervous system and immune responses. These multiple molecules and mechanisms suggest novel strategies that could be used for analgesic drug development. The present study investigated the possible anti-hyperalgesic effects of anomalin in complete Freund's adjuvant (CFA)-induced acute and chronic inflammatory pain models. Acute pretreatment of mice with anomalin (10 and 50mg/kg, i.p.) produced a significant anti-nociceptive effect against CFA- and carrageenan-induced mechanical hyperalgesia and allodynia. In a chronic pain model, administration of anomalin inhibited CFA-induced hyperalgesia, and it did not cause any apparent toxicity. Another set of experiments observed that anomalin inhibited CFA- and carrageenan-induced paw edema in acute and chronic models. To elucidate the molecular mechanism underlying the anti-nociceptive effect of anomalin, the various pain signaling pathways [NF-κB, cAMP response element-binding protein (CREB), and mitogen activated protein kinase (MAPKs)/AP-1] that are involved were examined. Intraperitoneal (i.p.) pretreatment of anomalin exhibited potent inhibitory effects on direct mediators of hyperalgesia (iNOS and COX-2). The release of CFA-induced plasma nitrite and paw tissue hyperalgesic cytokine (TNF-α) was reduced remarkably. In addition, the adenosine 5'-triphosphate (ATP) in plasma and substance P (SP) in paw tissue were markedly suppressed by anomalin. These results demonstrate that anomalin exhibits an analgesic effect in a consistent manner and that its mechanisms involve the inhibition of the NF-κB, CREB, and MAPKs/AP-1 signaling pathways.

    Topics: Acute Disease; Adenosine Triphosphate; Analgesics; Animals; Chronic Disease; Coumarins; Cyclic AMP Response Element-Binding Protein; Cyclooxygenase 2; Disease Models, Animal; Gene Expression Regulation, Enzymologic; Hyperalgesia; Inflammation; Liver; Male; Mice; Mitogen-Activated Protein Kinases; NF-kappa B; Nitric Oxide Synthase Type II; Nitrites; Pain; Signal Transduction; Substance P; Time Factors; Tumor Necrosis Factor-alpha

2013
Suppression of LPS-induced inflammatory and NF-κB responses by anomalin in RAW 264.7 macrophages.
    Journal of cellular biochemistry, 2011, Volume: 112, Issue:8

    The treatment of inflammatory diseases today is largely based on interrupting the synthesis or action of the mediators that drive the host's response to injury. It is on the basis of this concept that most of the anti-inflammatory drugs have been developed. In our continuous search for novel anti-inflammatory agents from traditional medicinal plants, Saposhnikovia divaricata has been a focus of our investigations. Anomalin, a pyranocoumarin constituent of S. divaricata, exhibits potent anti-inflammatory activity. To clarify the cellular signaling mechanisms underlying the anti-inflammatory action of anomalin, we investigated the effect of anomalin on the production of inflammatory molecules in LPS-stimulated murine macrophages. The anomalin dose-dependently inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA and protein expression in LPS-stimulated RAW 264.7 macrophage. Molecular analysis using quantitative real time polymerase chain reaction (qRT-PCR) revealed that several pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), were reduced by anomalin, and this reduction correlated with the down-regulation of the NF-κB signaling pathway. In addition, anomalin suppressed the LPS-induced phosphorylation and degradation of IκBα. To further study the mechanisms underlying its anti-inflammatory activity, an electrophoretic mobility shift assay (EMSA) using a (32) P-labeled NF-κB probe was conducted. LPS-induced NF-κB DNA binding was drastically abolished by anomalin. The present data suggest that anomalin is a major anti-inflammatory agent and may be a potential therapeutic candidate for the treatment of inflammatory disorders.

    Topics: Animals; Anti-Inflammatory Agents; Apiaceae; Cell Line; Coumarins; Cyclooxygenase 2; Cytokines; Dose-Response Relationship, Drug; Gene Expression Regulation; Inflammation; Lipopolysaccharides; Macrophages; Mice; Nitric Oxide Synthase Type II

2011
Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
    Current protocols in cytometry, 2010, Volume: Chapter 13

    This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein-specific protease of interest and results can be measured in both real time and as endpoint fluorescence assays on a flow cytometer. Endpoint assays are easily adapted to microplate format for flow cytometry high-throughput analysis and inhibitor screening.

    Topics: Animals; Biotinylation; Flow Cytometry; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; High-Throughput Screening Assays; Humans; Inflammation; Kinetics; Microspheres; Peptide Hydrolases; Peptides; Reproducibility of Results; Temperature

2010