anisomycin and Myocardial-Infarction

anisomycin has been researched along with Myocardial-Infarction* in 9 studies

Other Studies

9 other study(ies) available for anisomycin and Myocardial-Infarction

ArticleYear
Melatonin Ameliorates MI-Induced Cardiac Remodeling and Apoptosis through a JNK/p53-Dependent Mechanism in Diabetes Mellitus.
    Oxidative medicine and cellular longevity, 2020, Volume: 2020

    Topics: Animals; Anisomycin; Apoptosis; Cell Hypoxia; Cell Line; Cytoprotection; Diabetes Mellitus, Experimental; Diet, High-Fat; Electrocardiography; Enzyme Activators; Fibrosis; Glucose; JNK Mitogen-Activated Protein Kinases; Male; Melatonin; Mice, Inbred C57BL; Myocardial Contraction; Myocardial Infarction; Myocytes, Cardiac; Phosphorylation; Tumor Suppressor Protein p53; Ventricular Remodeling

2020
Disruption of Nox2 and TNFRp55/p75 eliminates cardioprotection induced by anisomycin.
    American journal of physiology. Heart and circulatory physiology, 2012, Nov-15, Volume: 303, Issue:10

    Transient activation of p38 through anisomycin is demonstrated to precondition the heart against myocardial injury. However, it remains unknown whether specific TNF-α receptor (TNFR) p55/p75 and Nox2, a subunit of NADPH oxidase, are involved in this event. We sought to investigate whether the genetic disruption of TNFRp55/p75 and Nox2 eliminated cardioprotection elicited by anisomycin and whether p38-dependent activation of Nox2 stimulated TNFR to ultimately achieve protective effects. Adult wild-type and TNFR p55/p75(-/-) and Nox2(-/-) mice received intraperitoneal injections of anisomycin (0.1 mg/kg), a potent activator of p38. The hearts were subjected to 30 min myocardial ischemia/30 min reperfusion in the Langendorff perfused heart after 24 h. Left ventricular function was measured, and infarct size was determined. Myocardial TNF-α protein, Nox2, and superoxides releases were detected. Gel kinase assay was employed to detect the effect of p38 on Nox2 phosphorylation. Activation of p38 through anisomycin produces marked improvements in left ventricular functional recovery, and the reduction of myocardial infarction, which were abrogated by disruption of Nox2 and TNFR p55/p75. Disruption of Nox2 and TNFR p55/p75 abolished the effect of anisomycin-induced reduction of infarct size. Anisomycin induced the production of TNF-α, which was abrogated in Nox2(-/-) mice and by treatment with SB203580, but not by disruption of p55/p75. Anisomycin treatment resulted in an increase in Nox2 protein and the phosphorylation of Nox2, which was blocked by inhibition of p38. Taken together, these results indicate that stimulation of the Nox2 and TNFR p55/p75 pathway is a novel approach to anisomycin-induced cardioprotection.

    Topics: Animals; Anisomycin; Disease Models, Animal; Enzyme Activation; Enzyme Activators; Injections, Intraperitoneal; Male; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; NADPH Oxidase 2; NADPH Oxidases; p38 Mitogen-Activated Protein Kinases; Protein Kinase Inhibitors; Receptors, Tumor Necrosis Factor, Type I; Receptors, Tumor Necrosis Factor, Type II; Signal Transduction; Superoxides; Time Factors; Tumor Necrosis Factor-alpha; Ventricular Function, Left

2012
Inhibition of myocardial apoptosis by ischaemic and beta-adrenergic preconditioning is dependent on p38 MAPK.
    Cardiovascular drugs and therapy, 2006, Volume: 20, Issue:1

    Apoptosis occurring during ischaemia /reperfusion contributes independently to tissue damage, and involves activation of the stress-kinase, p38 MAPK during reperfusion. Ischaemic preconditioning (IPC) protects against ischaemia/reperfusion mediated necrosis and apoptosis. The role of p38 MAPK in the protective effect of preconditioning against apoptosis is unknown. Pharmacologic preconditioning with isoproterenol (beta-PC) also protects against necrosis, but it is not known whether it protects against apoptosis.. The aim of the study was to investigate whether the protective effect of IPC against apoptosis is related to activation of p38 MAPK and whether beta-PC also protects against apoptosis.. Isolated perfused rat hearts were used to study the effect of ischaemia and reperfusion on apoptosis and infarct size. Ischaemic preconditioning was elicited by 3 x 5 min global ischaemia, and beta-PC by 5 min isoproterenol 10(-7) M. For infarct size hearts were subjected to regional ischaemia for 35 min followed by 120 min reperfusion. Infarct size was determined by the tetrazolium staining technique, and expressed as percentage of area at risk. For markers of apoptosis hearts were subjected to global ischaemia of 25 min plus 30 min reperfusion. Apoptosis was determined by Western blot using antibodies against caspase-3 and PARP. p38 MAPK activation was inhibited by SB203580 (1 microM) administration 10 min prior to commencing ischaemia, and bracketing the IPC and beta-PC preconditioning protocols. p38 MAPK was activated by administration of anisomycin (5 microM) 10 min prior to index ischaemia in one protocol, and 10 min during reperfusion in non-preconditioned as well as IPC and beta-PC hearts. Results were analysed using ANOVA and a Newman-Keuls post-hoc test.. In the apoptosis model using global ischaemia, IPC and beta-PC both resulted in a significant decrease in p38 MAPK activation at the end of reperfusion when compared to non-preconditioned hearts. This was accompanied by a significant decrease in apoptosis as measured with both caspase-3 activation and PARP cleavage. Inhibiting p38 MAPK by administration of SB203580 10 min prior to ischaemia resulted in a significant reduction in both markers of apoptosis. Bracketing the triggering phase of either IPC or beta-PC with SB203580 resulted in attenuated p38 MAPK activation during reperfusion and did not abolish the protective effect of IPC or beta-PC against apoptosis. Activating p38 MAPK with anisomycin prior to ischaemia resulted in a reduction of markers of apoptosis, whereas activation of p38 MAPK with anisomycin during reperfusion did not exacerbate apoptosis in any groups, exept for an increase in PARP cleavage in IPC hearts. In the model of regional ischaemia, IPC and beta-PC reduced infarct size significantly, and to the same extent as inhibition of p38 MAPK by administration of SB203580 10 min prior to ischaemia. Bracketing the triggering phase of either IPC or beta-PC did not abolish the reduction in infarct size. Activating p38 MAPK during reperfusion was accompanied by an increase in infarct size only in IPC hearts, but not in beta-PC hearts.. These results indicate that (1) Both IPC and beta-PC elicit protection against apoptosis and necrosis, (2) activation of p38 MAPK is not a trigger of preconditioning against apoptosis and necrosis and (3) activation of p38 MAPK during reperfusion increases necrosis only if ischaemia is used to precondition hearts, but not with pharmacologic preconditioning with isoproterenol.

    Topics: Adrenergic beta-Agonists; Animals; Anisomycin; Apoptosis; Enzyme Activators; Imidazoles; In Vitro Techniques; Ischemic Preconditioning, Myocardial; Isoproterenol; Models, Animal; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Necrosis; p38 Mitogen-Activated Protein Kinases; Protein Kinase Inhibitors; Pyridines; Rats

2006
Comparison between ischaemic and anisomycin-induced preconditioning: role of p38 MAPK.
    Cardiovascular drugs and therapy, 2003, Volume: 17, Issue:3

    To further evaluate the significance of p38 MAPK as trigger or mediator in ischaemic preconditioning, anisomycin and SB 203580 were used to manipulate its activation status. Special attention was given to the concentration of the drugs and protocols used. The isolated perfused rat heart, subjected to either 25 min global ischaemia or 35 min regional ischaemia, was used as experimental model. This was preceded by anisomycin (2 or 5 muM: 3 x 5 min; 5 muM: 5 min or 10 min; 5 muM: 10 min + 10 min washout or 20 muM: 20 min) or SB 203580 (2 muM: 3 x 5 min; before and during 3 x 5 min or 1 x 5 min ischaemic preconditioning; 10 min). Endpoints were functional recovery during reperfusion and infarct size.Anisomycin, regardless of the protocol, reduced infarct size, but did not improve functional recovery. In a number of experiments activation of JNK by anisomycin was blocked by SP 600125 (10 muM). SP 600125 had no effect on the anisomycin-induced reduction in infarct size. SB 203580 when administered for 10 min before sustained ischaemia, improved functional recovery and reduced infarct size. SB 203580 could not abolish the beneficial effects of a multi-cycle preconditioning protocol, but it significantly reduced the outcome of 1 x 5 min preconditioning. In all hearts improved functional recovery and reduction in infarct size were associated with attenuation of p38 MAPK activation during sustained ischaemia-reperfusion. The results indicate that activation of p38 MAPK acts as a trigger of preconditioning, while attenuation of its activation is a prerequisite for improved recovery and a reduction in infarct size.

    Topics: Animals; Anisomycin; Anthracenes; Cardiac Output; Coronary Circulation; Disease Models, Animal; Enzyme Activation; Heart Rate; Imidazoles; Ischemic Preconditioning, Myocardial; JNK Mitogen-Activated Protein Kinases; Male; MAP Kinase Kinase 4; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Myocardial Infarction; Myocardial Ischemia; p38 Mitogen-Activated Protein Kinases; Pyridines; Rats; Rats, Wistar

2003
The relative order of mK(ATP) channels, free radicals and p38 MAPK in preconditioning's protective pathway in rat heart.
    Cardiovascular research, 2002, Aug-15, Volume: 55, Issue:3

    Ischemic preconditioning (PC) reduces myocardial infarction by a mechanism that involves opening of mitochondrial ATP-dependent potassium channels (mK(ATP)), reactive oxygen species (ROS), and possibly activation of p38 mitogen-activated protein kinase (p38 MAPK). The actual order of these steps, however, is a matter of current debate. This study examined whether protection afforded by menadione, which protects by causing mitochondria to produce ROS, requires mK(ATP) opening. In addition, we tested whether protection from anisomycin, a p38 MAPK activator, is dependent on ROS production.. Isolated, buffer-perfused rat hearts were pretreated with menadione, and infarction was assessed after 30 min of regional ischemia and 120 min of reperfusion. Menadione reduced infarction in a dose-dependent manner with an EC(50) of 270 nM. Menadione's infarct-limiting effect was insensitive to 200 microM 5-hydroxydecanoate (5HD), an mK(ATP) channel blocker, whereas protection by diazoxide and PC were blocked by 5HD. Anisomycin caused hearts to resist infarction and this protective effect was abrogated by SB203580, a p38 MAPK inhibitor, and 2-mercaptopropionylglycine (MPG), a free radical scavenger.. These results indicate that mK(ATP) opening occurs upstream of mitochondrial ROS generation in the protective pathway. Furthermore, protection afforded by anisomycin was p38 MAPK- and ROS-dependent.

    Topics: Animals; Anisomycin; Decanoic Acids; Diazoxide; Enzyme Activators; Enzyme Inhibitors; Free Radical Scavengers; Free Radicals; Hydroxy Acids; Imidazoles; Ischemic Preconditioning, Myocardial; Male; Mitochondria, Heart; Mitogen-Activated Protein Kinases; Myocardial Infarction; p38 Mitogen-Activated Protein Kinases; Perfusion; Potassium Channel Blockers; Potassium Channels; Pyridines; Rats; Rats, Wistar; Signal Transduction; Tiopronin; Vitamin K 3

2002
p38 Triggers late preconditioning elicited by anisomycin in heart: involvement of NF-kappaB and iNOS.
    Circulation research, 2001, Nov-09, Volume: 89, Issue:10

    We investigated the role of stress-activated p38 MAP kinase (p38/SAPK-2) signaling in delayed preconditioning of the heart. Adult male out-bred ICR mice were treated with p38 activator, anisomycin (0.1 mg/kg IP), or vehicle (5% DMSO). Twenty-four hours later, hearts were perfused in Langendorff mode and subjected to 30 minutes of ischemia and 30 minutes of reperfusion. Improvement in postischemic recovery of end-diastolic pressure and reduction in infarct size was observed, which was abolished by SB203580, a specific p38 inhibitor, and pyrrolidinediethyldithiocarbamate (PDTC), the NF-kappaB inhibitor, but not by PD 98059, a specific inhibitor for MEK1 or 2. Transient increase in p38 phosphorylation was observed 15 minutes after anisomycin treatment which subsided by 30 minutes. Electrophoretic mobility shift assay demonstrated rapid activation of NF-kappaB DNA binding with anisomycin, peaking at 30 minutes. Western blot confirmed the accumulation of p50 and p65 in nuclear extracts after anisomycin treatment. Anisomycin-induced NF-kappaB DNA binding activity was inhibited by SB203580 and PDTC. Expression of inducible nitric oxide synthase (iNOS) mRNA, protein, and nitric oxide (NO) synthesis were enhanced in anisomycin-treated mice. SB203580 and PDTC blocked the increased expression of iNOS and increase in synthesis of NO. Selective iNOS inhibitor S-methylisothiourea abolished the protective effect of anisomycin. Furthermore, postischemic cardioprotective effect of anisomycin was absent in mice with targeted ablation of iNOS gene but not in the wild-type B6.129 mice. For the first time, these results suggest that direct pharmacological activation of p38 triggers delayed preconditioning by signaling mechanism involving NF-kappaB activation and synthesis of NO from iNOS.

    Topics: Animals; Anisomycin; DNA; Enzyme Activators; Enzyme Inhibitors; Heart; In Vitro Techniques; Ischemic Preconditioning, Myocardial; Male; Mice; Mice, Inbred ICR; Mice, Knockout; Mitogen-Activated Protein Kinases; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion; Myocardium; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Signal Transduction; Ventricular Function

2001
Ischemic preconditioning activates MAPKAPK2 in the isolated rabbit heart: evidence for involvement of p38 MAPK.
    Circulation research, 2000, Feb-04, Volume: 86, Issue:2

    Recent studies suggest that p38 mitogen-activated protein kinase (MAPK) may be involved in ischemic preconditioning (PC). To further test this possibility, the regulation of MAPK-activated protein kinase 2 (MAPKAPK2), a kinase immediately downstream from p38 MAPK, and the activity of c-Jun NH(2)-terminal kinase (JNK), a second MAPK, were examined in preconditioned hearts. Isolated, perfused rabbit hearts were subjected to 20 to 30 minutes of global ischemia. Ventricular biopsies before treatment and after 20 minutes of ischemia were homogenized, and the activities of MAPKAPK2 and JNK were evaluated. For the MAPKAPK2 experiments, 7 groups were studied, as follows: control hearts; preconditioned hearts; hearts treated with 500 nmol/L R(-) N(6)-(2-phenylisopropyl) adenosine (PIA), an A(1)-adenosine receptor agonist; preconditioned hearts pretreated with 100 micromol/L 8-(p-sulfophenyl) theophylline (SPT), an adenosine receptor antagonist; preconditioned hearts also treated with SB 203580, a potent inhibitor of p38 MAPK activation; hearts treated with 50 ng/mL anisomycin (a p38 MAPK/JNK activator); and hearts treated with both anisomycin (50 ng/mL) and the tyrosine kinase inhibitor genistein (50 micromol/L). MAPKAPK2 activity was not altered in control hearts after 20 minutes of global ischemia. By contrast, there was a 3.8-fold increase in activity during ischemia in preconditioned hearts. Activation of MAPKAPK2 in preconditioned hearts was blocked by both SPT and SB 203580. MAPKAPK2 activity during ischemia increased 3.5-fold and 3.3-fold in hearts pretreated with PIA or anisomycin, respectively. MAPKAPK2 activation during ischemia in hearts pretreated with anisomycin was blocked by genistein. In separate hearts, anisomycin mimicked the anti-infarct effect of PC, and that protection was abolished by genistein. JNK activity was measured in control and preconditioned hearts. There was a comparable, modest decline in activity during 30 minutes of global ischemia in both groups. As a positive control, a third group of hearts was treated with anisomycin before global ischemia, and in these, JNK activity increased by 290% above baseline. These results confirm that the p38 MAPK/MAPKAPK2 pathway is activated during ischemia only if the heart is in a preconditioned state. These data further support p38 MAPK as an important signaling component in ischemic PC.

    Topics: Animals; Anisomycin; Coronary Circulation; Enzyme Activation; Enzyme Inhibitors; Genistein; In Vitro Techniques; Intracellular Signaling Peptides and Proteins; Ischemic Preconditioning, Myocardial; JNK Mitogen-Activated Protein Kinases; MAP Kinase Kinase 4; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Myocardial Infarction; Myocardial Ischemia; Myocardium; p38 Mitogen-Activated Protein Kinases; Protein Serine-Threonine Kinases; Protein Synthesis Inhibitors; Rabbits

2000
Okadaic acid and anisomycin are protective and stimulate the SAPK/JNK pathway.
    Journal of cardiovascular pharmacology, 1999, Volume: 34, Issue:2

    We report that okadaic acid (OA), a known inhibitor of Ser/Thr phosphatases, protects pig myocardium against ischemic injury in an in vivo model and stimulates the activities of stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs). When OA was directly infused into the subsequently ischemic myocardium for 60 min before a 60-min period of coronary occlusion followed by reperfusion, infarct size was reduced from a control value of 83.4 +/- 2.8% of the risk region to 40.7 +/- 9.1%. When OA was infused for 10 min before a 5-min occlusion and during 45 min thereafter, infarct size was reduced to 26.5%. In a separate set of similar experiments, we pretreated pig hearts in vivo with the protein-synthesis inhibitor and known activator of SAPK/JNK, anisomycin (AN), and found that this compound also significantly reduced infarct size from 83.4 +/- 2.8.1% to 48.1 +/- 5.1%. For in vitro assays, OA (600 nM), AN (500 microM), or solvent (KHB) were locally infused into the left ventricular myocardium, and biopsies from in situ beating hearts were obtained after 10, 30, and 60 min of infusion. The activities of Ser/Thr phosphatases (PPases), especially PP-2A, were significantly decreased after OA infusion. OA infusion increased the activity (in-gel phosphorylation of N-terminal c-Jun1-135) of both 46- and 55-kDa SAPK/JNKs (twofold to threefold, 30 and 60 min of infusion), and this increase correlated well with the observed decrease of PPase activities. Western blot analysis with a phosphospecific SAPK/JNK (Thr 183/Tyr 185) antibody showed an increased content of the phosphorylated forms after OA treatment. We observed significant stimulation of SAPK/JNK activity also after AN treatment (threefold to fourfold, after 30 min of infusion). In contrast to the SAPK/JNKs, the infusion of both OA and AN did not significantly change the activities and phosphorylation of extracellular signal-related kinases (ERKs) and p38-MAPK. The findings that the protective effect of both OA and AN correlates with increased activity of SAPK/JNKs suggest the involvement of these enzymes in the mechanism of cardioprotection.

    Topics: Animals; Anisomycin; Calcium-Calmodulin-Dependent Protein Kinases; Hemodynamics; JNK Mitogen-Activated Protein Kinases; Male; MAP Kinase Kinase 4; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Myocardial Infarction; Myocardial Ischemia; Okadaic Acid; p38 Mitogen-Activated Protein Kinases; Phosphoprotein Phosphatases; Protein Kinases; Swine

1999
Protein tyrosine kinase is downstream of protein kinase C for ischemic preconditioning's anti-infarct effect in the rabbit heart.
    Journal of molecular and cellular cardiology, 1998, Volume: 30, Issue:2

    The present study tested the hypothesis that one or more tyrosine kinase(s) are downstream of protein kinase C (PKC) in the signal transduction pathway responsible for the cardioprotective effect of ischemic preconditioning (PC). Isolated rabbit hearts were subjected to 30 min of regional ischemia followed by 2 h of reperfusion. Infarct size was measured by triphenyltetrazolium staining and expressed as a percentage of the area at risk. Infarction in control hearts was 32.9+/-1.8%. Ischemic PC with 5-min ischemia/10-min reperfusion reduced infarct size to 11.5+/-1.5% (P<0.05). Infusion of the tyrosine kinase inhibitors, genistein (50 microM) or lavendustin A (0.5 microM), alone did not affect the level of infarction. When infused around the 5-min PC ischemia genistein failed to block protection (13.7+/-1.0%). However, when present at the onset of the 30-min ischemia both genistein and lavendustin A completely aborted protection (31.4+/-2.0 and 28.1+/-1.5%, respectively). Activation of PKC by phorbol 12-myristate 13-acetate (PMA, 0.05 nmol) was as protective is ischemic PC (14.9+/-3.0%; P<0. 05). Similar to PC, PMA-induced protection was completely prevented by both genistein and lavendustin A. Conversely, anisomycin (50 ng/ml), an activator of MAP kinase kinases (dual tyrosine and threonine kinases), was very protective (7.5+/-1.6%; P<0.05) and this protection was still present when PKC was inhibited by 5 microM chelerythrine (12.1+/-1.6%; P<0.05). In conclusion, activation of a tyrosine kinase during the long ischemia appears to be required for cardioprotection in the rabbit heart. Furthermore, the ability of tyrosine kinase inhibitors to block PMA-induced protection in conjunction with the failure of PKC inhibition to prevent anisomycin-induced protection suggests that the tyrosine kinase is downstream of PKC and that the tyrosine kinase may be a MAP kinase kinase.

    Topics: Alkaloids; Animals; Anisomycin; Benzophenanthridines; Enzyme Activation; Enzyme Inhibitors; Female; Genistein; Hemodynamics; Ischemic Preconditioning, Myocardial; Male; Mitogen-Activated Protein Kinase Kinases; Myocardial Infarction; Myocardial Reperfusion Injury; Phenanthridines; Phenols; Protein Kinase C; Protein Kinases; Protein-Tyrosine Kinases; Rabbits; Signal Transduction; Tetradecanoylphorbol Acetate

1998