anisomycin and Colorectal-Neoplasms

anisomycin has been researched along with Colorectal-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for anisomycin and Colorectal-Neoplasms

ArticleYear
Combined effect of chrysin and apigenin on inhibiting the development and progression of colorectal cancer by suppressing the activity of P38-MAPK/AKT pathway.
    IUBMB life, 2021, Volume: 73, Issue:5

    Either apigenin or chrysin alone has been found to exert anti-inflammatory and tumor suppressive effect. However, the combined effect of apigenin and chrysin on colorectal cancer (CRC) has not been fully clarified. We attempted to explore the effect of chrysin and apigenin on CRC and its related mechanism. SW480 and HCT-116 cells were treated with either apigenin or chrysin alone or two-drug combination at different doses of 5, 25, 50, 100 μM for optimal concentration determination. Then, we focused on the individual and combined effect of apigenin and chrysin on clonogenicity, apoptosis, metastasis-related behaviors of CRC cells by colony formation assay, cell scratch assay, flow cytometry, and transwell assay. The changes of the activation of P38-MAPK/AKT pathway were evaluated underlying apigenin and chrysin intervention, further after co-treated with P38-MAPK agonist anisomycin. Apigenin (25 μM) combined with chrysin (25 μM) were determined to be optimal. Treatment with the combination of apigenin (25 μM) and chrysin (25 μM) significantly reduced cell clone numbers, migration, and invasion ability, while increased the cell apoptosis in both CRC cell lines. The combined effect was higher than chrysin or apigenin alone. Meanwhile, p-P38 and p-AKT were significantly downregulated by chrysin and apigenin treatment. The tumor inhibitive effect of apigenin combined with chrysin was obviously reversed by adding P38 agonist, anisomycin. Apigenin (25 μM) combined with chrysin (25 μM) showed synergetic effect in inhibiting the growth and metastasis of CRC cells by suppressing the activity of P38-MAPK/AKT pathway.

    Topics: Adenocarcinoma; Anisomycin; Apigenin; Apoptosis; Cell Line, Tumor; Cell Movement; Clone Cells; Colorectal Neoplasms; Drug Synergism; Flavonoids; HCT116 Cells; Humans; MAP Kinase Signaling System; Molecular Targeted Therapy; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; p38 Mitogen-Activated Protein Kinases; Proto-Oncogene Proteins c-akt; Tumor Stem Cell Assay

2021
Anisomycin-induced GATA-6 degradation accompanying a decrease of proliferation of colorectal cancer cell.
    Biochemical and biophysical research communications, 2016, 09-09, Volume: 478, Issue:1

    Transcription factor GATA-6 plays a key role in normal cell differentiation of the mesoderm and endoderm. On the other hand, GATA-6 is abnormally overexpressed in many clinical gastrointestinal cancer tissue samples, and accelerates cell proliferation or an anti-apoptotic response in cancerous tissues. We previously showed that activation of the JNK signaling cascade causes proteolysis of GATA-6. In this study, we demonstrated that anisomycin, a JNK activator, stimulates nuclear export of GATA-6 in a colorectal cancer cell line, DLD-1. Concomitantly, anisomycin remarkably inhibits the proliferation of DLD-1 cells via G2/M arrest in a plate culture. However, it did not induce apoptosis under growth arrest conditions. Furthermore, the growth of DLD-1 cells in a spheroid culture was suppressed by anisomycin. Although 5-FU showed only a slight inhibitory effect on 3D spheroid cultures, the same concentration of 5-FU together with a low concentration of anisomycin exhibited strong growth inhibition. These results suggest that the induction of GATA-6 dysfunction may be more effective for chemotherapy for colorectal cancer, although the mechanism underlying the synergistic effect of 5-FU and anisomycin remains unknown.

    Topics: Anisomycin; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Colorectal Neoplasms; Drug Synergism; Fluorouracil; GATA6 Transcription Factor; Humans; Protein Synthesis Inhibitors

2016