anguibactin has been researched along with Fish-Diseases* in 5 studies
5 other study(ies) available for anguibactin and Fish-Diseases
Article | Year |
---|---|
Molecular characterization of the TonB2 protein from the fish pathogen Vibrio anguillarum.
In the fish pathogen Vibrio anguillarum the TonB2 protein is essential for the uptake of the indigenous siderophore anguibactin. Here we describe deletion mutants and alanine replacements affecting the final six amino acids of TonB2. Deletions of more than two amino acids of the TonB2 C-terminus abolished ferric-anguibactin transport, whereas replacement of the last three residues resulted in a protein with wild-type transport properties. We have solved the high-resolution solution structure of the TonB2 C-terminal domain by NMR spectroscopy. The core of this domain (residues 121-206) has an alphabetabetaalphabeta structure, whereas residues 76-120 are flexible and extended. This overall folding topology is similar to the Escherichia coli TonB C-terminal domain, albeit with two differences: the beta4 strand found at the C-terminus of TonB is absent in TonB2, and loop 3 is extended by 9 A (0.9 nm) in TonB2. By examining several mutants, we determined that a complete loop 3 is not essential for TonB2 activity. Our results indicate that the beta4 strand of E. coli TonB is not required for activity of the TonB system across Gram-negative bacterial species. We have also determined, through NMR chemical-shift-perturbation experiments, that the E. coli TonB binds in vitro to the TonB box from the TonB2-dependent outer membrane transporter FatA; moreover, it can substitute in vivo for TonB2 during ferric-anguibactin transport in V. anguillarum. Unexpectedly, TonB2 did not bind in vitro to the FatA TonB-box region, suggesting that additional factors may be required to promote this interaction. Overall our results indicate that TonB2 is a representative of a different class of TonB proteins. Topics: Amino Acid Sequence; Animals; Bacterial Outer Membrane Proteins; Bacterial Proteins; Conserved Sequence; Crystallography, X-Ray; Escherichia coli; Fish Diseases; Gene Deletion; Membrane Proteins; Models, Molecular; Molecular Sequence Data; Mutation; Nuclear Magnetic Resonance, Biomolecular; Peptides; Protein Structure, Tertiary; Protein Transport; Recombinant Proteins; Sequence Alignment; Static Electricity; Vibrio | 2009 |
Tandem heterocyclization domains in a nonribosomal peptide synthetase essential for siderophore biosynthesis in Vibrio anguillarum.
Anguibactin, the siderophore produced by Vibrio anguillarum 775, is synthesized via a nonribosomal peptide synthetase (NRPS) mechanism. Most of the genes required for anguibactin biosynthesis are harbored by the pJM1 plasmid. Complete sequencing of this plasmid identified an orf encoding a 108 kDa predicted protein, AngN. In this work we show that AngN is essential for anguibactin biosynthesis and possesses two domains with homology to cyclization (Cy) domains of NRPSs. Substitution by alanine of the aspartic acid residues within a conserved motif of either Cy1 or Cy2 domain demonstrated the importance of these two domains in AngN function during siderophore biosynthesis. Site-directed mutations in both domains (D133A/D575A and D138A/D580A) resulted in anguibactin-deficient phenotypes while mutations in each domain did not abolish siderophore production but caused a reduction in the amounts produced. The mutations D133A/D575A and D138A/D580A also resulted as expected in a dramatic attenuation of the virulence of V. anguillarum 775 highlighting the importance of this gene for the biosynthesis of anguibactin within the vertebrate host. Regulation of the angN gene follows the patterns observed at the iron transport-biosynthesis promoter with angN transcription repressed in the presence of iron and enhanced by AngR and trans-acting factor (TAF) under iron limitation. Topics: Amino Acid Sequence; Animals; Base Sequence; Cyclization; Fish Diseases; Genes, Bacterial; Iron; Molecular Sequence Data; Mutagenesis, Site-Directed; Oncorhynchus mykiss; Peptide Biosynthesis, Nucleic Acid-Independent; Peptide Synthases; Peptides; Plasmids; Protein Structure, Tertiary; Sequence Alignment; Siderophores; Vibrio; Vibrio Infections; Virulence | 2008 |
A nonribosomal peptide synthetase with a novel domain organization is essential for siderophore biosynthesis in Vibrio anguillarum.
Anguibactin, a siderophore produced by Vibrio anguillarum, is synthesized via a nonribosomal peptide synthetase (NRPS) mechanism. We have identified a gene from the V. anguillarum plasmid pJM1 that encodes a 78-kDa NRPS protein termed AngM, which is essential in the biosynthesis of anguibactin. The predicted AngM amino acid sequence shows regions of homology to the consensus sequence for the peptidyl carrier protein (PCP) and the condensation (C) domains of NRPSs, and curiously, these two domains are not associated with an adenylation (A) domain. Substitution by alanine of the serine 215 in the PCP domain and of histidine 406 in the C domain of AngM results in an anguibactin-deficient phenotype, underscoring the importance of these two domains in the function of this protein. The mutations in angM that affected anguibactin production also resulted in a dramatic attenuation of the virulence of V. anguillarum 775, highlighting the importance of this gene in the establishment of a septicemic infection in the vertebrate host. Transcription of the angM gene is initiated at an upstream transposase gene promoter that is repressed by the Fur protein in the presence of iron. Analysis of the sequence at this promoter showed that it overlaps the iron transport-biosynthesis promoter and operates in the opposite direction. Topics: Amino Acid Sequence; Animals; Bacterial Proteins; Base Sequence; DNA Transposable Elements; Fish Diseases; Gene Expression Regulation, Bacterial; Genetic Complementation Test; Molecular Sequence Data; Mutagenesis, Insertional; Oncorhynchus mykiss; Peptide Synthases; Peptides; Sequence Analysis, DNA; Vibrio; Vibrio Infections | 2004 |
Characterization of the angR gene of Vibrio anguillarum: essential role in virulence.
The ability to utilize the iron bound by high-affinity iron-binding proteins in the vertebrate host is an important virulence factor for the marine fish pathogen Vibrio anguillarum. Virulence in septicemic infections is due to the presence of a highly efficient plasmid-encoded iron transport system. AngR, a 110-kDa protein component of this system, appears to play a role in both regulation of the expression of the iron transport genes fatDCBA and the production of the siderophore anguibactin. Therefore, study of the expression of the angR gene and the properties of its product, the AngR protein, may contribute to the understanding of the mechanisms of virulence of this pathogen. In this work, we present genetic and molecular evidence from transposition mutagenesis experiments and RNA analysis that angR, which maps immediately downstream of the fatA gene, is part of a polycistronic transcript that also includes the iron transport genes fatDCBA and angT, a gene located downstream of angR which showed domain homology to certain thioesterases involved in nonribosomal peptide synthesis of siderophores and antibiotics. In order to dissect the specific domains of AngR associated with regulation of iron transport gene expression, anguibactin production, and virulence, we also generated a panel of site-directed angR mutants, as well as deletion derivatives. Both virulence and anguibactin production were dramatically affected by each one of the angR modifications. In contrast to the need for an intact AngR molecule for anguibactin production and virulence, the regulation of iron transport gene expression does not require the entire AngR molecule, since truncation of the carboxy terminus carrying the nonribosomal peptide synthetase cores, as well as the site-directed mutations, resulted in derivatives that retained their ability to regulate gene expression which was only abolished after truncation of amino-terminal sequences containing helix-turn-helix and leucine zipper motifs and a specialized heterocyclization and condensation domain found in certain nonribosomal peptide synthetases. The evidence, while not rigorously eliminating the possibility that a separate regulatory polypeptide exists and is encoded somewhere within the 5'-end region of the angR gene, strongly supports the idea that AngR is a bifunctional protein and that it plays an essential role in the virulence mechanisms of V. anguillarum. We also show in this study that the angT gene, found downstream Topics: Animals; Bacterial Outer Membrane Proteins; Bacterial Proteins; DNA Transposable Elements; DNA-Binding Proteins; Fish Diseases; Gene Expression Regulation, Bacterial; Iron; Membrane Transport Proteins; Mutagenesis, Insertional; Oncorhynchus mykiss; Peptides; Ribonucleases; Siderophores; Transcription Factors; Vibrio; Vibrio Infections; Virulence | 1999 |
Chromosome-mediated iron uptake system in pathogenic strains of Vibrio anguillarum.
We describe in this work a new iron uptake system encoded by chromosomal genes in pathogenic strains of Vibrio anguillarum. This iron uptake system differs from the plasmid-encoded anguibactin-mediated system present in certain strains of V. anguillarum in several properties. The siderophore anguibactin is not utilized as an external siderophore, and although characteristic outer membrane proteins are synthesized under iron-limiting conditions, these are not related to the plasmid-mediated outer membrane protein OM2 associated with ferric anguibactin transport. Furthermore, the siderophore produced by the plasmidless strains may be functionally related to enterobactin as demonstrated by bioassays with enterobactin-deficient mutants, although its behavior under various chemical treatments suggested major differences from that siderophore. Hybridization experiments suggested that the V. anguillarum chromosome-mediated iron uptake system is unrelated genetically to either the anguibactin or enterobactin-associated iron assimilation systems. Topics: Animals; Bacterial Outer Membrane Proteins; Chromosomes, Bacterial; Enterobactin; Fish Diseases; Flatfishes; Genes, Bacterial; Iron; Iron Chelating Agents; Mutation; Nucleic Acid Hybridization; Peptides; Sequence Homology, Nucleic Acid; Siderophores; Vibrio; Vibrio Infections; Virulence | 1988 |