angiotensinogen has been researched along with Lung-Neoplasms* in 4 studies
1 review(s) available for angiotensinogen and Lung-Neoplasms
Article | Year |
---|---|
Genetic Association Between Angiotensinogen Polymorphisms and Lung Cancer Risk.
Earlier published studies investigating the association between polymorphisms in the angiotensinogen gene and lung cancer risk showed no consistent results. In this study, we have summarized all currently available data to examine the correlation by meta-analysis. Case-control studies addressing the association being examined were identified through Embase, the Cochrane Library, ISI Web of Science (Web of Knowledge), Google Scholar, PubMed, and CNKI databases. Risk of lung cancer (odds ratio [OR] and 95% confidence interval [CI]) was estimated with the fixed or the random effects model assuming homozygous, allele, heterozygous, dominant, and recessive models for all angiotensinogen polymorphisms. We identified a total of 10 articles in this meta-analysis, including 7 for Leu84Phe, 4 for Ile143Val, and 3 for Leu53Leu. In the meta-analysis of Leu84Phe polymorphism, the homozygous model provided an OR of 1.44 (Phe/Phe vs Ile/Ile: OR = 1.44, 95% CI = 1.04-1.99, P values for heterogeneity test (Q-test) [P(Het)] = 0.382). The significantly increased risk was similarly indicated in the recessive model (Phe/Phe vs Phe/Ile + Ile/Ile: OR = 1.41, 95% CI = 1.02-1.95, P(Het) = 0.381). We also observed a positive association in the Caucasian subgroup. The heterozygous model and the dominant model tested for the Ile143Val polymorphism showed a marginally increased risk (Ile/Val vs Ile/Ile: OR = 1.16, 95% CI = 1.00-1.36, P(Het) = 0.323; Val/Val + Ile/Val vs Ile/Ile: OR = 1.15, 95% CI = 0.99-1.34, P(Het) = 0.253). These data suggest that Leu84Phe and Ile143Val polymorphisms in the angiotensinogen gene may be useful biomarkers for lung cancer in some specific populations. Topics: Angiotensinogen; Genetic Predisposition to Disease; Humans; Lung Neoplasms | 2015 |
3 other study(ies) available for angiotensinogen and Lung-Neoplasms
Article | Year |
---|---|
Hypoxia-induced endothelial progenitor cell function is blunted in angiotensinogen knockout mice.
Angiotensinogen (AGT), the precursor of angiotensin I, is known to be involved in tumor angiogenesis and associated with the pathogenesis of coronary atherosclerosis. This study was undertaken to determine the role played by AGT in endothelial progenitor cells (EPCs) in tumor progression and metastasis. It was found that the number of EPC colonies formed by AGT heterozygous knockout (AGT(+/-)) cells was less than that formed by wild-type (WT) cells, and that the migration and tube formation abilities of AGT(+/-) EPCs were significantly lower than those of WT EPCs. In addition, the gene expressions of vascular endothelial growth factor (VEGF), Flk1, angiopoietin (Ang)-1, Ang-2, Tie-2, stromal derived factor (SDF)-1, C-X-C chemokine receptor type 4 (CXCR4), and of endothelial nitric oxide synthase (eNOS) were suppressed in AGT(+/-) EPCs. Furthermore, the expressions of hypoxia-inducible factor (HIF)-1α and -2α were downregulated in AGT(+/-) early EPCs under hypoxic conditions, suggesting a blunting of response to hypoxia. Moreover, the activation of Akt/eNOS signaling pathways induced by VEGF, epithelial growth factor (EGF), or SDF-1α were suppressed in AGT(+/-) EPCs. In AGT(+/-) mice, the incorporation of EPCs into the tumor vasculature was significantly reduced, and lung tumor growth and melanoma metastasis were attenuated. In conclusion, AGT is required for hypoxia-induced vasculogenesis. Topics: Angiotensinogen; Animals; Basic Helix-Loop-Helix Transcription Factors; Cell Movement; Endothelial Progenitor Cells; Gene Expression Regulation, Neoplastic; Human Umbilical Vein Endothelial Cells; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Lung Neoplasms; Melanoma; Mice; Mice, Inbred C57BL; Mice, Knockout; Neoplasm Transplantation; Signal Transduction | 2014 |
Plasma proteomic analysis may identify new markers for radiation-induced lung toxicity in patients with non-small-cell lung cancer.
To study whether radiation induces differential changes in plasma proteomics in patients with and without radiation-induced lung toxicity (RILT) of Grade >/=2 (RILT2).. A total of 57 patients with NSCLC received radiation therapy (RT) were eligible. Twenty patients, 6 with RILT2 with tumor stage matched to 14 without RILT2, were enrolled for this analysis. Platelet-poor plasma was obtained before RT, at 2, 4, 6 weeks during RT, and 1 and 3 months after RT. Plasma proteomes were compared using a multiplexed quantitative proteomics approach involving ExacTag labeling, reverse-phase high-performance liquid chromatography and nano-LC electrospray tandem mass spectrometry. Variance components models were used to identify the differential protein expression between patients with and without RILT2.. More than 100 proteins were identified and quantified. After excluding proteins for which there were not at least 2 subjects with data for at least two time points, 76 proteins remained for this preliminary analysis. C4b-binding protein alpha chain, Complement C3, and Vitronectin had significantly higher expression levels in patients with RILT2 compared with patients without RILT2, based on both the data sets of RT start to 3 months post-RT (p < 0.01) and RT start to the end of RT (p < 0.01). The expression ratios of patients with RILT2 vs. without RILT2 were 1.60, 1.36, 1.46, and 1.66, 1.34, 1.46, for the above three proteins, respectively.. This proteomic approach identified new plasma protein markers for future studies on RILT prediction. Topics: Adult; Aged; Aged, 80 and over; Angiotensinogen; Biomarkers; Carcinoma, Non-Small-Cell Lung; Chromatography, High Pressure Liquid; Complement C3; Complement C4b-Binding Protein; Female; Humans; Keratins, Type II; Lung; Lung Neoplasms; Male; Middle Aged; Nanotechnology; Proteins; Proteomics; Radiation Injuries; Reproducibility of Results; Tandem Mass Spectrometry; Vitronectin | 2010 |
Fas-induced apoptosis of alveolar epithelial cells requires ANG II generation and receptor interaction.
Recent works from this laboratory demonstrated potent inhibition of Fas-induced apoptosis in alveolar epithelial cells (AECs) by the angiotensin-converting enzyme (ACE) inhibitor captopril [B. D. Uhal, C. Gidea, R. Bargout, A. Bifero, O. Ibarra-Sunga, M. Papp, K. Flynn, and G. Filippatos. Am. J. Physiol. 275 (Lung Cell. Mol. Physiol. 19): L1013-L1017, 1998] and induction of dose-dependent apoptosis in AECs by purified angiotensin (ANG) II [R. Wang, A. Zagariya, O. Ibarra-Sunga, C. Gidea, E. Ang, S. Deshmukh, G. Chaudhary, J. Baraboutis, G. Filippatos and B. D. Uhal. Am. J. Physiol. 276 (Lung Cell. Mol. Physiol. 20): L885-L889, 1999]. These findings led us to hypothesize that the synthesis and binding of ANG II to its receptor might be involved in the induction of AEC apoptosis by Fas. Apoptosis was induced in the AEC-derived human lung carcinoma cell line A549 or in primary AECs isolated from adult rats with receptor-activating anti-Fas antibodies or purified recombinant Fas ligand, respectively. Apoptosis in response to either Fas activator was inhibited in a dose-dependent manner by the nonthiol ACE inhibitor lisinopril or the nonselective ANG II receptor antagonist saralasin, with maximal inhibitions of 82 and 93% at doses of 0.5 and 5 microg/ml, respectively. In both cell types, activation of Fas caused a significant increase in the abundance of mRNA for angiotensinogen (ANGEN) that was unaffected by saralasin. Transfection with antisense oligonucleotides against ANGEN mRNA inhibited the subsequent induction of Fas-stimulated apoptosis by 70% in A549 cells and 87% in primary AECs (both P < 0.01). Activation of Fas increased the concentration of ANG II in the serum-free extracellular medium 3-fold in primary AECs and 10-fold in A549 cells. Apoptosis in response to either Fas activator was completely abrogated by neutralizing antibodies specific for ANG II (P < 0.01), but isotype-matched nonimmune immunoglobulins had no significant effect. These data indicate that the induction of AEC apoptosis by Fas requires a functional renin-angiotensin system in the target cell. They also suggest that therapeutic control of AEC apoptosis is feasible through pharmacological manipulation of the local renin-angiotensin system. Topics: Adenocarcinoma; Amino Acid Chloromethyl Ketones; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Angiotensinogen; Animals; Antibodies; Antisense Elements (Genetics); Apoptosis; Cysteine Proteinase Inhibitors; Enzyme-Linked Immunosorbent Assay; Fas Ligand Protein; fas Receptor; Fibrosis; Gene Expression; Humans; Lisinopril; Lung Neoplasms; Male; Membrane Glycoproteins; Neutralization Tests; Peptidyl-Dipeptidase A; Pulmonary Alveoli; Rats; Rats, Wistar; Receptors, Angiotensin; Renin-Angiotensin System; RNA, Messenger; Signal Transduction; Transfection; Tumor Cells, Cultured | 1999 |