angiotensinogen has been researched along with Hypertrophy* in 18 studies
1 review(s) available for angiotensinogen and Hypertrophy
Article | Year |
---|---|
The renin-angiotensin system: revised concepts and implications for renal function.
Topics: Angiotensinogen; Animals; Humans; Hypertrophy; Kidney; Kidney Tubules; Peptidyl-Dipeptidase A; Proteinuria; Receptors, Angiotensin; Renal Circulation; Renal Insufficiency; Renin; Renin-Angiotensin System; Sclerosis | 1994 |
17 other study(ies) available for angiotensinogen and Hypertrophy
Article | Year |
---|---|
Arterial wall hypertrophy is ameliorated by α2-adrenergic receptor antagonist or aliskiren in kidneys of angiotensinogen-knockout mice.
Arterial hypertrophy and interstitial fibrosis are important characteristics in kidneys of angiotensinogen-knockout (Atg. We performed renal denervation and administered the α2-adrenergic receptor (AR) antagonist, atipamezole, to Atg. Norepinephrine content in kidneys of Atg. Alpha2-AR signaling is one of the causes of persistent renal arterial hypertrophy in Atg Topics: Adrenergic alpha-2 Receptor Antagonists; Amides; Angiotensinogen; Animals; Fibrosis; Fumarates; Hypertrophy; Japan; Kidney; Mice; Mice, Inbred ICR; Mice, Knockout; Renal Artery; Renin; Tokyo; Transforming Growth Factor beta1 | 2018 |
Isomer-specific effects of conjugated linoleic acid on blood pressure, adipocyte size and function.
Obesity-related hypertension may be caused by activation of the local adipose tissue renin-angiotensin system, resulting in exaggerated production of the vasoconstrictor angiotensin II. Additionally, secretion of adiponectin from adipose tissue, which prevents endothelial dysfunction, is altered in obesity. Consumption of conjugated linoleic acid (CLA) has been shown to modulate cytokine release from adipocytes and positively influence blood pressure in younger rats, but its physiological actions in older models with established hypertension and isomer-specific effects on adipocyte size remain to be determined. Therefore, we investigated the effects of CLA isomers on adipocyte size in relation to blood pressure and adipokine production by hypertrophic adipocytes in older fa/fa Zucker rats with established hypertension. fa/fa Zucker rats were fed with cis(c)9, trans(t)11-CLA or t10, c12-CLA isomers for 8 weeks and compared with lean and obese rats fed with the control diet. Blood pressure and adipocyte size were subsequently measured. Collagenase-isolated adipocytes were size-separated and angiotensinogen and adiponectin protein levels quantified by Western blotting. The t10, c12-CLA group had reduced blood pressure, fewer large adipocytes and increased serum adiponectin. Angiotensinogen was present at higher levels in the large adipocytes, whereas the converse was observed for adiponectin. The beneficial effects of the t10, c12-CLA isomer on blood pressure and adipocyte size in vivo may be due to its ability to reduce the number of large adipocytes, which alters the levels of vasoactive molecules secreted from adipose tissue. Topics: Adipocytes; Adiponectin; Adipose Tissue; Angiotensinogen; Animals; Anti-Obesity Agents; Antihypertensive Agents; Blood Pressure; Blotting, Western; Collagenases; Dietary Fats; Hypertension; Hypertrophy; Isomerism; Linoleic Acids, Conjugated; Male; Obesity; Rats; Rats, Zucker | 2012 |
Dietary fish oil is antihypertrophic but does not enhance postischemic myocardial function in female mice.
Clinically and experimentally, a case for omega-3 polyunsaturated fatty acid (PUFA) cardioprotection in females has not been clearly established. The goal of this study was to investigate whether dietary omega-3 PUFA supplementation could provide ischemic protection in female mice with an underlying genetic predisposition to cardiac hypertrophy. Mature female transgenic mice (TG) with cardiac-specific overexpression of angiotensinogen that develop normotensive cardiac hypertrophy and littermate wild-type (WT) mice were fed a fish oil-derived diet (FO) or PUFA-matched control diet (CTR) for 4 wk. Myocardial membrane lipids, ex vivo cardiac performance (intraventricular balloon) after global no-flow ischemia and reperfusion (15/30 min), and reperfusion arrhythmia incidence were assessed. FO diet suppressed cardiac growth by 5% and 10% in WT and TG, respectively (P < 0.001). The extent of mechanical recovery [rate-pressure product (RPP) = beats/min x mmHg] of FO-fed WT and TG hearts was similar (50 +/- 7% vs. 45 +/- 12%, 30 min reperfusion), and this was not significantly different from CTR-fed WT or TG. To evaluate whether systemic estrogen was masking a protective effect of the FO diet, the responses of ovariectomized (OVX) WT and TG mice to FO dietary intervention were assessed. The extent of mechanical recovery of FO-fed OVX WT and TG (RPP, 50 +/- 4% vs. 64 +/- 8%) was not enhanced compared with CTR-fed mice (RPP, 60 +/- 11% vs. 80 +/- 8%, P = 0.335). Dietary FO did not suppress the incidence of reperfusion arrhythmias in WT or TG hearts (ovary-intact mice or OVX). Our findings indicate a lack of cardioprotective effect of dietary FO in females, determined by assessment of mechanical and arrhythmic activity postischemia in a murine ex vivo heart model. Topics: Angiotensin II; Angiotensinogen; Animals; Arrhythmias, Cardiac; Dietary Fats, Unsaturated; Disease Models, Animal; Estrogens; Female; Fish Oils; Genetic Predisposition to Disease; Hypertrophy; Mice; Mice, Transgenic; Myocardial Ischemia; Myocardium; Ovariectomy; Reperfusion Injury | 2009 |
Exaggerated blood pressure variability superimposed on hypertension aggravates cardiac remodeling in rats via angiotensin II system-mediated chronic inflammation.
Hypertensive patients with large blood pressure variability (BPV) have aggravated end-organ damage. However, the pathogenesis remains unknown. We investigated whether exaggerated BPV aggravates hypertensive cardiac remodeling and function by activating inflammation and angiotensin II-mediated mechanisms. A model of exaggerated BPV superimposed on chronic hypertension was created by performing bilateral sinoaortic denervation (SAD) in spontaneously hypertensive rats (SHRs). SAD increased BPV to a similar extent in Wistar Kyoto rats and SHRs without significant changes in mean blood pressure. SAD aggravated left ventricular and myocyte hypertrophy and myocardial fibrosis to a greater extent and impaired left ventricular systolic function in SHRs. SAD induced monocyte chemoattractant protein-1, transforming growth factor-beta, and angiotensinogen mRNA upregulations and macrophage infiltration of the heart in SHRs. The effects of SAD on cardiac remodeling and inflammation were much smaller in Wistar Kyoto rats compared with SHRs. Circulating levels of norepinephrine, the active form of renin, and inflammatory cytokines were not affected by SAD in Wistar Kyoto rats and SHRs. A subdepressor dose of candesartan abolished the SAD-induced left ventricular/myocyte hypertrophy, myocardial fibrosis, macrophage infiltration, and inductions of monocyte chemoattractant protein-1, transforming growth factor-beta, and angiotensinogen and subsequently prevented systolic dysfunction in SHRs with SAD. These findings suggest that exaggerated BPV induces chronic myocardial inflammation and thereby aggravates cardiac remodeling and systolic function in hypertensive hearts. The cardiac angiotensin II system may play a role in the pathogenesis of cardiac remodeling and dysfunction induced by a combination of hypertension and exaggerated BPV. Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensinogen; Animals; Benzimidazoles; Biphenyl Compounds; Blood Pressure; Chemokine CCL2; Chronic Disease; Disease Models, Animal; Heart Diseases; Heart Ventricles; Hypertension; Hypertrophy; Inflammation; Macrophages; Male; Myocytes, Cardiac; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Tetrazoles; Transforming Growth Factor beta; Ventricular Remodeling | 2009 |
Down-regulation of catalase and oxidative modification of protein kinase CK2 lead to the failure of apoptosis repressor with caspase recruitment domain to inhibit cardiomyocyte hypertrophy.
Cardiac hypertrophy is regulated by a complex interplay of pro- and anti-hypertrophic factors. Here, we report a novel anti-hypertrophic pathway composed of catalase, protein kinase CK2 (CK2), and apoptosis repressor with caspase recruitment domain (ARC). Our results showed that ARC phosphorylation levels, CK2 activity, and catalase expression levels were decreased in the hearts of the angiotensinogen transgenic mice and in cardiomyocytes treated with the hypertrophic stimuli, including phenylephrine, tumor necrosis factor-alpha, and angiotensin II. To understand the role of ARC in hypertrophy, we observed that enforced expression of ARC could inhibit hypertrophy. Knockdown of endogenous ARC or inhibition of its phosphorylation could sensitize cardiomyocytes to undergoing hypertrophy. The phosphorylatable, but not the nonphosphorylatable, ARC could inhibit hypertrophy. Thus, ARC is able to inhibit hypertrophy in a phosphorylation-dependent manner. In exploring the molecular mechanism by which CK2 activity is reduced, we found that CK2 was carbonylated in angiotensinogen transgenic mice and in cardiomyocytes treated with the hypertrophic stimuli. The decrease in catalase expression led to an elevated level of reactive oxygen species. The latter oxidatively modified CK2, resulting in its carbonylation. CK2 lost its catalytic activity upon carbonylation. ARC is phosphorylated by CK2, and ARC phosphorylation levels were reduced as a consequence of the decrease of CK2 activity. To understand the molecular mechanism by which ARC inhibits hypertrophy, we observed that ARC could inhibit the activation of mitochondrial permeability transition. These results suggest that catalase, CK2, and ARC constitute an anti-hypertrophic pathway in the heart. Topics: Angiotensin II; Angiotensinogen; Animals; Apoptosis Regulatory Proteins; Cardiotonic Agents; Casein Kinase II; Catalase; Cell Membrane Permeability; Down-Regulation; Gene Expression Regulation, Enzymologic; Hypertrophy; Mice; Mice, Transgenic; Mitochondria, Heart; Muscle Proteins; Myocytes, Cardiac; Oxidation-Reduction; Phenylephrine; Phosphorylation; Protein Carbonylation; Protein Processing, Post-Translational; Rats; Rats, Wistar; Reactive Oxygen Species; Tumor Necrosis Factor-alpha | 2008 |
Overexpression of angiotensinogen in the myocardium induces downregulation of the fatty acid oxidation pathway.
Heart failure is associated with downregulation of the fatty acid oxidation pathway in the ventricular myocardium. Since angiotensin II plays a critical role in myocardial phenotypic changes associated with heart failure, we investigated the effect of chronic angiotensin II stimulation on the fatty acid oxidation pathway in transgenic (TG) mice with targeted overexpression of angiotensinogen in the myocardium (TG1306/1R mice). TG1306/R1 mice progressively developed left ventricular hypertrophy. After 12 months, approximately half of the mice exhibited signs of heart failure including increased lung weight index [>+2 SD of age-matched wild-type (WT) mice] and 5-fold increase of myocardial brain natriuretic peptide expression. Myocardial mRNA and protein expression of peroxisome proliferator-activated receptor alpha (PPARalpha) progressively decreased in both WT and TG1306/R1 mice during the 12 months observation period, but much more pronounced in TG1306/R1 mice. Concomitantly, mRNA expression of enzymes of fatty acid oxidation (medium-chain acyl CoA dehydrogenase, MCAD; carnitine palmitoyl transferase I, CPT-I) was reduced in TG1306/R1 compared with age-matched WT mice. However, protein expression of MCAD and CPT-I was decreased concomitantly only in TG mice with criteria of heart failure. Correspondingly, myocardial oxidation of palmitate, measured during ex vivo working heart perfusion, was reduced by 25% in TG1306/R1 mice with heart failure. These results demonstrate that angiotensin II-induced cardiac hypertrophy is associated with reduction of PPARalpha and of mRNA expression of enzymes of fatty acid metabolism relative to age-matched WT mice. However, both protein expression of fatty acid oxidation enzymes and the rate of fatty acid oxidation remain unchanged unless heart failure occurs, suggesting the involvement of posttranscriptional mechanisms in the metabolic changes associated with heart failure. Topics: Angiotensinogen; Animals; Biological Transport; Down-Regulation; Fatty Acids; Heart Failure; Hypertrophy; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Myocardium; Phenotype; PPAR alpha; RNA, Messenger | 2006 |
Effects of cortisol on cardiac myocytes and on expression of cardiac genes in fetal sheep.
In 17 fetal sheep aged 129 days, the effects of large-dose infusions of cortisol (72.1 mg/day for 2-3 days) on proliferation, binucleation, and hypertrophy of cardiac myocytes, cardiac expression of angiotensinogen, angiotensin receptor subtypes 1 and 2, Glut-1, glucocorticoid and mineralocorticoid receptors, proteins of the MAPK pathways and calcineurin were studied. Cortisol levels were 8.7 +/- 2.3 nM (SE) in 8 control and 1,028 +/- 189 nM in 9 treated fetuses (P < 0.001). Cortisol had no effect on myocyte binucleation. Left ventricular free wall (LVFW) uni- and binucleated myocytes were larger in cortisol-treated fetuses (P < 0.001, P < 0.05). Cortisol-treated fetuses had higher right ventricular free wall (RVFW) and LVFW angiotensinogen (Aogen) mRNA levels (treated: 2.30 +/- 0.37, n = 8 and 2.05 +/- 0.45, n = 7 vs. control: 0.94 +/- 0.12, n = 8 and 0.67 +/- 0.09, n = 7, P < 0.02). Levels of the glucose transporter Glut-1 mRNA were lower in the LVFW of treated fetuses (0.83 +/- 0.23 vs. 1.47 +/- 0.30 in control, P < 0.05, n = 7, 8). The higher the cortisol level, the greater the Aogen mRNA level (RVFW, r = 0.61, P < 0.01, n = 16; LVFW, r = 0.83, P < 0.0003, n = 14). There were no other changes in mRNA levels nor in levels of extracellular kinase, JNK, p38, their phosphorylated forms, and calcineurin. Thus high levels of cortisol such as occur after birth do not affect fetal cardiac myocyte binucleation or number but are associated with higher levels of ventricular Aogen mRNA, lower levels of Glut-1 mRNA, and hypertrophy of LVFW myocytes. These effects could impact on postnatal cardiac development. Topics: Angiotensinogen; Animals; Cell Division; Cell Nucleus; Fetal Development; Fetal Heart; Fetus; Gene Expression; Glucose Transporter Type 1; Heart Ventricles; Hydrocortisone; Hypertrophy; Monosaccharide Transport Proteins; Myocytes, Cardiac; Renin-Angiotensin System; RNA, Messenger; Sheep | 2005 |
Cerebral arteriolar structure in mice overexpressing human renin and angiotensinogen.
We examined the hypothesis that the renin-angiotensin system plays an important role in vascular remodeling (defined as reduced external diameter) during chronic hypertension. We measured pressure, diameter, and cross-sectional area of the vessel wall in maximally dilated cerebral arterioles in transgenic mice that overexpress both human renin and human angiotensinogen and in spontaneously hypertensive mice, a model of chronic hypertension that is thought to develop independently of the renin-angiotensin system. Systemic arterial pressure under conscious conditions was increased by similar amounts in transgenically hypertensive mice (153+/-6 versus 117+/-4 mm Hg in controls; mean+/-SE, P<0.05) and spontaneously hypertensive mice (148+/-5 versus 112+/-5 mm Hg; P<0.05). The external diameter of maximally dilated cerebral arterioles was reduced in transgenically hypertensive mice (52+/-2 versus 66+/-3 micro m; P<0.05), but not in spontaneously hypertensive mice (58+/-4 versus 60+/-4 micro m; P>0.05). The cross-sectional area of the vessel wall was increased in both transgenically hypertensive mice (504+/-53 versus 379+/-37 microm2; P<0.05) and spontaneously hypertensive mice (488+/-40 versus 328+/-38 microm2; P<0.05). During maximal dilatation, the stress-strain curves in cerebral arterioles of transgenically hypertensive mice and spontaneously hypertensive mice were shifted to the right of the curves in corresponding controls, an indication that arteriolar distensibility was increased in the transgenically and spontaneously hypertensive groups. Thus, cerebral arterioles undergo remodeling and hypertrophy in transgenically hypertensive mice, but only hypertrophy in spontaneously hypertensive mice. These findings support the hypothesis that the renin-angiotensin system is an important determinant of vascular remodeling during chronic hypertension. Topics: Angiotensinogen; Animals; Arterioles; Blood Pressure; Chronic Disease; Humans; Hypertension; Hypertrophy; Mice; Mice, Transgenic; Renin; Renin-Angiotensin System; Telencephalon; Vasodilation | 2003 |
High glucose stimulates angiotensinogen gene expression and cell hypertrophy via activation of the hexosamine biosynthesis pathway in rat kidney proximal tubular cells.
The present study investigated whether activation of the hexosamine biosynthesis pathway might mediate at least in part the high glucose effect on angiotensinogen (ANG) gene expression and immortalized renal proximal tubular cell (IRPTC) hypertrophy. IRPTC were cultured in monolayer. ANG, renin, and beta-actin mRNA expression were determined by specific RT-PCR assays. Phosphorylation of p38 MAPK, activating transcription factor-2 (ATF-2), and cAMP-responsive element-binding protein (CREB) was determined by Western blot analysis. Cell hypertrophy was assessed by flow cytometry, intracellular p27kip1 protein levels, and [3H]leucine incorporation into proteins. Glucosamine stimulated ANG and renin mRNA expression and enhanced p38 MAPK, ATF-2, and CREB phosphorylation in normal glucose (5 mm) medium. Azaserine and 6-diazo-5-oxo-l-norleucine (inhibitors of glutamine: fructose-6-phosphate amino transferase enzyme) blocked the stimulatory effect of high glucose, but not that of glucosamine, on ANG gene expression in IRPTCs. SB 203580 (a specific p38 MAPK inhibitor) attenuated glucosamine action on ANG gene expression as well as p38 MAPK and ATF-2 phosphorylation, but not that of CREB. GF 109203X and calphostin C (inhibitors of protein kinase C) blocked the effect of glucosamine on ANG gene expression and CREB phosphorylation, but had no impact on p38 MAPK and ATF-2 phosphorylation. Finally, both glucosamine and high glucose induced IRPTC hypertrophy. The hypertrophic effect of glucosamine was blocked in the presence of GF 109203X, but not azaserine and SB 203580. In contrast, the hypertrophic effect of high glucose was blocked in the presence of azaserine and GF 109203X, but not SB203580. Our studies demonstrate that the stimulatory effect of high glucose on ANG gene expression and IRPTC hypertrophy may be mediated at least in part via activation of hexosamine biosynthesis pathway signaling. Topics: Activating Transcription Factor 2; Angiotensinogen; Animals; Azaserine; Cell Line, Transformed; Cyclic AMP Response Element-Binding Protein; Diazooxonorleucine; Dose-Response Relationship, Drug; Gene Expression; Glucosamine; Glucose; Hexosamines; Hypertrophy; Kidney Tubules, Proximal; Mitogen-Activated Protein Kinases; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Rats; RNA, Messenger; Transcription Factors | 2003 |
Insulin inhibits dexamethasone effect on angiotensinogen gene expression and induction of hypertrophy in rat kidney proximal tubular cells in high glucose.
The present studies investigated whether insulin inhibits the stimulatory effect of dexamethasone (DEX) on angiotensinogen (ANG) gene expression and induction of hypertrophy in rat immortalized renal proximal tubular cells (IRPTCs) in a high-glucose milieu. Rat IRPTCs were cultured in monolayer. ANG and ANG mRNA expression in IRPTCs were quantified by a specific RIA for rat ANG and by RT-PCR assay, respectively. A fusion gene containing the full length of the 5'-flanking region of the rat ANG gene linked to a chloramphenicol acetyl transferase reporter gene was introduced into IRPTCs. The level of fusion gene expression was determined by cellular chloramphenicol acetyl transferase enzymatic activity. Cellular hypertrophy was assessed by flow cytometry, cellular p27(Kip1) protein expression, and protein assay. Our results showed that high glucose (i.e. 25 mM) and DEX (10(-7) M) additively stimulated ANG gene expression and induced IRPTC hypertrophy. Insulin inhibited the effect of high glucose and DEX on these parameters. The inhibitory effect of insulin was reversed by PD 98059 (a MAPK inhibitor) but not by wortmannin (a phosphatidylinositol-3-kinase inhibitor). These results demonstrate that insulin is effective in blocking the stimulatory action of high glucose and DEX on ANG gene expression and induction of IRPTC hypertrophy, suggesting its important role in preventing local intrarenal renin-angiotensin system activation and renal proximal tubular cell hypertrophy induced by hyperglycemia and glucocorticoids in vivo. Topics: Angiotensinogen; Animals; Cell Cycle Proteins; Cell Line, Transformed; Chloramphenicol O-Acetyltransferase; Cyclin-Dependent Kinase Inhibitor p27; Dexamethasone; Flow Cytometry; Gene Expression; Glucocorticoids; Glucose; Hypertrophy; Insulin; Kidney Tubules, Proximal; Mifepristone; Promoter Regions, Genetic; Rats; Receptors, Glucocorticoid; Recombinant Fusion Proteins; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Transfection; Tumor Suppressor Proteins | 2002 |
Essential role(s) of the intrarenal renin-angiotensin system in transforming growth factor-beta1 gene expression and induction of hypertrophy of rat kidney proximal tubular cells in high glucose.
These studies investigated the question of whether the intrarenal renin-angiotensin system (RAS) is essential for transforming growth factor-beta1 (TGF-beta1) gene expression and induction of hypertrophy of renal proximal tubular cells in high glucose in vitro. Antisense and sense angiotensinogen (ANG) cDNAs were stably transfected into rat immortalized renal proximal tubular cells (IRPTC). ANG secretion from rat IRPTC was quantified by a specific RIA for rat ANG. Cellular ANG, TGF-beta1, and collagen alpha1 (type IV) mRNA levels were determined by Northern blot analysis or by reverse transcriptase-PCR assay. Hypertrophy of IRPTC was analyzed by Western blotting of cellular p27(Kip1) protein, flow cytometry, and cellular protein assay. The results showed that stable transfer of antisense ANG cDNA into IRPTC suppressed the basal TGF-beta1 and collagen alpha1 (type IV) mRNA expression and blocked the stimulatory effect of high glucose (i.e., 25 mM) on TGF-beta1 and collagen alpha1 (type IV) mRNA expression and induction of IRPTC hypertrophy. In contrast, stable transfer of sense ANG cDNA into IRPTC had no significant effect on these parameters. These data demonstrate that local intrarenal RAS activation is essential for TGF-beta1 gene expression and induction of hypertrophy of renal proximal tubular cells in high glucose. Topics: Angiotensinogen; Animals; Cell Line; Collagen Type IV; Dose-Response Relationship, Drug; Gene Expression; Glucose; Hypertrophy; Kidney; Kidney Tubules, Proximal; Rats; Renin-Angiotensin System; RNA, Messenger; Transfection; Transforming Growth Factor beta; Transforming Growth Factor beta1 | 2002 |
Early diabetes mellitus stimulates proximal tubule renin mRNA expression in the rat.
Enhanced intrarenal angiotensin II (Ang II) activity may contribute to diabetic nephropathy. The proximal tubule is a proposed site of significant intrarenal Ang II production. We determined the effect of early diabetes on mRNA expression of components of the proximal tubule renin-angiotensin system.. Three groups of male Sprague-Dawley rats were studied after two weeks: (1) control (C), (2) streptozotocin-induced diabetes (STZ), and (3) STZ-induced diabetes, with normoglycemia maintained by insulin implants (STZ-I). Competitive reverse transcription-polymerase chain reaction was used to assay mRNA for renin, angiotensinogen, and angiotensin-converting enzyme in suspensions of proximal tubules; plasma and kidney levels of Ang II were measured by radioimmunoassay, and Western analysis of Ang II subtype 1 (AT1) receptors was performed.. STZ rats tended to have increased plasma and intrarenal levels of Ang II compared with C and STZ-I rats. In proximal tubules, mRNA for renin was significantly increased in STZ rats, with reversal to control values in STZ-I rats (C, 2432 +/- 437 vs. STZ, 5688 +/- 890 fg/0.25 microg RNA, P < 0.05 vs. C, N = 9, vs. STZ-I, 1676 +/- 376 fg/0.25 microg RNA, P = NS vs. C). In STZ rats, the AT1 receptor antagonist losartan caused a further fivefold increase in proximal tubule renin mRNA, associated with proximal tubular renin immunostaining. STZ had no significant effect on mRNA expression for angiotensinogen or angiotensin-converting enzyme in proximal tubules. By Western blot analysis, cortical and proximal tubule AT1 receptor protein expression was significantly decreased in STZ rats.. These data suggest activation of the proximal tubule renin-angiotensin system in early STZ diabetes, mediated at least partly by enhanced expression of renin mRNA. Increased local production of Ang II could contribute to tubulointerstitial injury in this model. Topics: Angiotensin II; Angiotensin Receptor Antagonists; Angiotensinogen; Animals; Antihypertensive Agents; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Gene Expression; Hypertrophy; Hypoglycemic Agents; Insulin; Kidney Tubules, Proximal; Losartan; Male; Nephritis, Interstitial; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, Angiotensin; Renin; Renin-Angiotensin System; RNA, Messenger | 2000 |
Cultured neonatal rat cardiac myocytes and fibroblasts do not synthesize renin or angiotensinogen: evidence for stretch-induced cardiomyocyte hypertrophy independent of angiotensin II.
The hypertrophic response of cardiomyocytes exposed to mechanical stretch is assumed to depend on the release of angiotensin (Ang) II from these cells. Here we studied the synthesis of renin-angiotensin system (RAS) components by cardiac cells under basal conditions and after stretch.. Myocytes and fibroblasts were isolated by enzymatic dissociation from hearts of 1-3-day-old Wistar rat strain pups, grown for 1 day in serum-supplemented medium and then cultured in a chemically defined, serum-free medium. Medium and cell lysate were collected 5 days later or after exposure of the cells to cyclic stretch for 24 h. Prorenin, renin and angiotensinogen were measured by enzyme-kinetic assay; Ang I and Ang II were measured by radioimmunoassay after SepPak extraction and HPLC separation.. Prorenin, but none of the other RAS components, could be detected in the medium of both cell types. However, its levels were low and the Ang I-generating activity corresponding with these low prorenin levels could not be inhibited by the specific rat renin inhibitor CH-732, suggesting that it was most likely due to bovine and/or horse prorenin sequestered from the serum-containing medium to which the cells had been exposed prior to the serum-free period. When incubated with Ang I, both myocytes and fibroblasts generated Ang II in a captopril-inhibitable manner. Myocyte and fibroblast cell lysates did not contain prorenin, renin, angiotensinogen, Ang I or Ang II in detectable quantities. Stretch increased myocyte protein synthesis by 20%, but was not accompanied by Ang II release into the medium.. Cardiac myocytes and fibroblasts do not synthesize renin, prorenin or angiotensinogen in concentrations that are detectable or, it not detectable, high enough to result in Ang II concentrations of physiological relevance. These cells do synthesize ACE, thereby allowing the synthesis of Ang II at cardiac tissue sites when renin and angiotensinogen are provided via the circulation. Ang II is not a prerequisite to observe a hypertrophic response of cardiomyocytes following stretch. Topics: Analysis of Variance; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Angiotensinogen; Animals; Animals, Newborn; Captopril; Cells, Cultured; Culture Media, Serum-Free; Enzyme Precursors; Fibroblasts; Hypertrophy; Myocardium; Peptidyl-Dipeptidase A; Rats; Rats, Wistar; Renin; Stress, Mechanical | 1999 |
Identification and antisense inhibition of a renin-angiotensin system in transgenic cardiomyocytes.
Cardiac myocytes (AT-1 cells) derived from heart tumors of mice transgenic for an atrial natriuretic factor promoter, SV40 large T-antigen DNA transgene, demonstrate properties consistent with normal cardiac myocytes but retain the capacity to proliferate in culture. We studied the renin-angiotensin system (RAS) and related growth regulation of these cells because AT-1 cells (or transgenically similar cells) may be useful to repair injured myocardium. This study reveals two separate and distinct findings: 1) AT-1 cells proliferate or hypertrophy in response to angiotensin II (ANG II), depending on their competence to proceed through the cell cycle; and 2) AT-1 cells possess components of a RAS, and angiotensinogen antisense experiments suggest that the RAS is functional in these cells. Specifically, AT-1 cells proliferate in response to ANG II in low-serum medium but hypertrophy in response to ANG II when first treated with mitomycin C (at a concentration that inhibits DNA replication but is not cytotoxic). The ANG II-mediated proliferative and hypertrophic responses are inhibited by DuP 753. In addition, there is a significant increase in the protein-to-DNA ratio of cells, which are proliferation-inhibited in the absence of ANG II treatment (20%, P < 0.05). DuP 753 also inhibits this hypertrophy, suggesting that these cells possess a functional RAS. AT-1 cells contain mRNAs for angiotensin-converting enzyme, renin, angiotensinogen, and the AT1 receptor as determined by sequence analysis of polymerase chain reaction amplification products. Antisense oligonucleotides complementary to the angiotensinogen mRNA specifically inhibit angiotensinogen mRNA accumulation and proliferation of AT-1 cells. In summary, these cells contain a growth-regulating RAS, suggesting that such a system may play a significant role in left ventricular hypertrophy. Topics: Angiotensin II; Angiotensinogen; Animals; Base Sequence; Blood; Cell Division; Hypertrophy; Mice; Mice, Transgenic; Molecular Sequence Data; Myocardium; Oligonucleotide Probes; Oligonucleotides, Antisense; Polymerase Chain Reaction; Renin-Angiotensin System; RNA, Messenger; Tumor Cells, Cultured | 1995 |
Renin-angiotensin system gene expression during compensatory renal hypertrophy in the rat.
Topics: Angiotensinogen; Animals; Gene Expression; Hypertrophy; Kidney; Liver; Male; Rats; Rats, Sprague-Dawley; Receptors, Angiotensin; Renin; Renin-Angiotensin System; RNA, Messenger | 1993 |
Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro.
Hypertrophy is a fundamental adaptive process employed by postmitotic cardiac and skeletal muscle in response to mechanical load. How muscle cells convert mechanical stimuli into growth signals has been a long-standing question. Using an in vitro model of load (stretch)-induced cardiac hypertrophy, we demonstrate that mechanical stretch causes release of angiotensin II (Ang II) from cardiac myocytes and that Ang II acts as an initial mediator of the stretch-induced hypertrophic response. The results not only provide direct evidence for the autocrine mechanism in load-induced growth of cardiac muscle cells, but also define the pathophysiological role of the local (cardiac) renin-angiotensin system. Topics: Actins; Angiotensin I; Angiotensin II; Angiotensinogen; Animals; Animals, Newborn; Atrial Natriuretic Factor; Cardiomegaly; Cells, Cultured; Cytoplasmic Granules; Endothelins; Gene Expression Regulation; Genes, fos; Hypertrophy; In Vitro Techniques; Mechanoreceptors; Myocardium; Peptidyl-Dipeptidase A; Rats; Renin; RNA, Messenger; Stress, Mechanical | 1993 |
Possible role of the vascular renin-angiotensin system in hypertension and vascular hypertrophy.
To investigate the vascular renin-angiotensin system in two-kidney, one clip (2K1C) hypertension, we measured angiotensinogen messenger RNA (mRNA) in the aorta and aortic and plasma angiotensin II (Ang II) concentration in 2K1C rats during early (4 weeks) and chronic (16 weeks) phases. Four weeks after clipping, there was no significant change in aortic angiotensinogen mRNA in both groups. However, the levels of plasma and aortic Ang II in 2K1C rats were significantly elevated compared with levels in control rats (p less than 0.05). Sixteen weeks after clipping, aortic angiotensinogen mRNA in 2K1C rats did not differ compared with the level in control rats. The aortic Ang II level in 2K1C rats was significantly increased compared with that in control rats (p less than 0.05), whereas there was no significant difference in the plasma Ang II level between the groups during this chronic phase. During both phases, morphological studies in 2K1C rats showed arteriosclerotic changes, with a significant increase in the wall-to-lumen ratio (p less than 0.01). The present study is the first to demonstrate an increase in vascular Ang II levels and concomitant morphological arteriosclerotic changes during both the early and chronic phases in 2K1C rats. Together with the results of our previous study that demonstrated an elevation of vascular renin activity during the early phase and increased vascular angiotensin converting enzyme activity during the chronic phase, we conclude that the elevated vascular renin activity and vascular angiotensin converting enzyme activity during each phase may play a dominant role in the increase in vascular Ang II observed during both phases. Topics: Angiotensin I; Angiotensin II; Angiotensinogen; Animals; Aorta, Abdominal; Hypertension, Renovascular; Hypertrophy; Male; Rats; Rats, Inbred Strains; Renin-Angiotensin System; RNA, Messenger; Veins | 1992 |