angiotensin-iii and Pain

angiotensin-iii has been researched along with Pain* in 2 studies

Other Studies

2 other study(ies) available for angiotensin-iii and Pain

ArticleYear
Angiotensin III modulates the nociceptive control mediated by the periaqueductal gray matter.
    Neuroscience, 2009, Dec-15, Volume: 164, Issue:3

    Endogenous angiotensin (Ang) II and/or an Ang II-derived peptide, acting on Ang type 1 (AT(1)) and Ang type 2 (AT(2)) receptors, can carry out part of the nociceptive control modulated by periaqueductal gray matter (PAG). However, neither the identity of this putative Ang-peptide, nor its relationship to Ang II antinociceptive activity was clarified. Therefore, we have used tail-flick and incision allodynia models combined with an HPLC time course of Ang metabolism, to study the Ang III antinociceptive effect in the rat ventrolateral (vl) PAG using peptidase inhibitors and receptor antagonists. Ang III injection into the vlPAG increased tail-flick latency, which was fully blocked by Losartan and CGP 42,112A, but not by divalinal-Ang IV, indicating that Ang III effect was mediated by AT(1) and AT(2) receptors, but not by the AT(4) receptor. Ang III injected into the vlPAG reduced incision allodynia. Incubation of Ang II with punches of vlPAG homogenate formed Ang III, Ang (1-7) and Ang IV. Amastatin (AM) inhibited the formation of Ang III from Ang II by homogenate, and blocked the antinociceptive activity of Ang II injection into vlPAG, suggesting that aminopeptidase A (APA) formed Ang III from Ang II. Ang III can also be formed from Ang I by a vlPAG alternative pathway. Therefore, the present work shows, for the first time, that: (i) Ang III, acting on AT(1) and AT(2) receptors, can elicit vlPAG-mediated antinociception, (ii) the conversion of Ang II to Ang III in the vlPAG is required to elicit antinociception, and (iii) the antinociceptive activity of endogenous Ang II in vlPAG can be ascribed preponderantly to Ang III.

    Topics: Analgesics; Angiotensin II; Angiotensin III; Angiotensin Receptor Antagonists; Animals; Disease Models, Animal; Drug Interactions; Efferent Pathways; Glutamyl Aminopeptidase; Losartan; Male; Microinjections; Neural Inhibition; Nociceptors; Oligopeptides; Pain; Pain Measurement; Pain Threshold; Peptides; Periaqueductal Gray; Rats; Rats, Wistar; Receptors, Angiotensin

2009
Modulation by angiotensin III of nociception-related and arterial pressure-related neuronal responsiveness in the nucleus reticularis gigantocellularis of the rat.
    Regulatory peptides, 1994, Mar-17, Volume: 50, Issue:3

    We evaluated possible modulation by angiotensin III (AIII) of the interactive effect of noxious stimuli and elevation in systemic arterial pressure on the responsiveness of neurons in the nucleus reticularis gigantocellularis (NRGC) of the medulla oblongata. Combined extracellular single-neuron recording and microiontophoresis were carried out on male, adult Sprague-Dawley rats anesthetized with pentobarbital sodium. The responsiveness of NRGC neurons to nociception (tail clamp) and/or transient hypertension elicited by phenylephrine (5 micrograms/kg, i.v.), in the absence or presence of AIII, was used as the experimental index. Microiontophoretic application of the heptapeptide suppressed the responses of spontaneously active NRGC neurons to individually delivered nociception or hypertension. Interestingly, the preferential reduction in responsiveness to tail clamp upon simultaneous elevation in arterial pressure was reversed to one that favored nociception in the presence of AIII. These actions of the heptapeptide appeared to be receptor-specific, since they were discernibly blocked by its selective antagonist, Ile7-angiotensin III. Our results reveal that neuropeptides such as AIII may differentially modulate neuronal responsiveness according to the prevailing physiologic input(s) to the central nervous system of the animal.

    Topics: Angiotensin III; Animals; Blood Pressure; Brain Mapping; Electrophysiology; Male; Medulla Oblongata; Neurons; Nociceptors; Pain; Phenylephrine; Rats; Rats, Sprague-Dawley; Time Factors

1994