angiotensin ii has been researched along with Ventricular Dysfunction in 13 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (38.46) | 29.6817 |
2010's | 7 (53.85) | 24.3611 |
2020's | 1 (7.69) | 2.80 |
Authors | Studies |
---|---|
Du, Y; Guan, C; Huang, Z; Li, P; Wang, K; Zhang, Y; Zhou, M | 1 |
Czesnikiewicz-Guzik, M; Dembowska, E; Dohnal, T; Graham, D; Guzik, TJ; Harrison, DG; Mikolajczyk, TP; Nosalski, R; Vidler, F | 1 |
Imai, Y; Ito, H; Kadowaki, A; Kuba, K; Sato, T; Suzuki, T; Watanabe, H | 1 |
Graham, D; Guzik, TJ; Justo-Junior, AS; Kiss, AK; Kowalczyk, P; Koziol, J; Kusmierczyk, Z; Luc, K; Maffia, P; Mazur, M; Mikolajczyk, TP; Naruszewicz, M; Nosalski, R; Schramm-Luc, A; Skiba, DS | 1 |
Aoki, Y; Imaizumi, T; Kai, H; Kudo, H; Takayama, N; Yasuoka, S | 1 |
Ainscough, JF; Ball, SG; Drinkhill, MJ; Frentzou, GA; Turner, NA | 1 |
Choi, YS; de Mattos, AB; Kim, M; Kolwicz, SC; Li, T; Nabben, M; Shao, D; Tian, R; Wang, W | 1 |
Gao, Y; Han, R; He, J; Kang, L; Li, C; Li, Y; Tian, J; Wang, J | 1 |
Brum, PC; Bueno, CR; Ferreira, JC; Irigoyen, MC; Krieger, JE; Mattos, KC; Oliveira, EM; Pereira, MG; Rosa, KT | 1 |
Chen, AD; Chen, Q; Gao, XY; Shi, Z; Wang, W; Xu, Y; Zhu, GQ | 1 |
Castro, P; Collantes, P; Copaja, M; Diaz-Araya, G; Godoy, I; Jalil, JE; Lavandero, S; Ocaranza, MP; Pinto, M; Ramirez, C; Roman, M; Varas, M | 1 |
Berti, F; Berti, M; Bianchi, M; Bonomo, S; De Gennaro Colonna, V; Ferrario, P; Guazzi, M; Manfredi, B; Muller, EE; Rossoni, G | 1 |
de Resende, MM; Mill, JG | 1 |
1 review(s) available for angiotensin ii and Ventricular Dysfunction
Article | Year |
---|---|
Molecular mechanism of aggravation of hypertensive organ damages by short-term blood pressure variability.
Topics: Angiotensin II; Animals; Antihypertensive Agents; Blood Pressure; Cardiomegaly; Disease Models, Animal; Fibrosis; Humans; Hypertension; Myocarditis; Myocardium; Rats; Receptors, Mineralocorticoid; Renin-Angiotensin System; Risk Factors; Signal Transduction; Time Factors; Ventricular Dysfunction | 2014 |
12 other study(ies) available for angiotensin ii and Ventricular Dysfunction
Article | Year |
---|---|
IRX2 activated by jumonji domain-containing protein 2A is crucial for cardiac hypertrophy and dysfunction in response to the hypertrophic stimuli.
Topics: Angiotensin II; Animals; beta Catenin; Cardiomegaly; Cardiomyopathy, Hypertrophic; Homeodomain Proteins; Jumonji Domain-Containing Histone Demethylases; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Transcription Factors; Ventricular Dysfunction | 2023 |
Th1-type immune responses to Porphyromonas gingivalis antigens exacerbate angiotensin II-dependent hypertension and vascular dysfunction.
Topics: Angiotensin II; Animals; Antigens, Bacterial; Dose-Response Relationship, Drug; Flow Cytometry; Hypertension; Inflammation; Male; Mice; Mice, Inbred C57BL; Porphyromonas gingivalis; Th1 Cells; Ventricular Dysfunction | 2019 |
Loss of Apelin Augments Angiotensin II-Induced Cardiac Dysfunction and Pathological Remodeling.
Topics: Angiotensin II; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Apelin; Biopsy; Cardiomegaly; Disease Models, Animal; Echocardiography; Fibrosis; Heart Failure; Hypertension; Mice; Mice, Knockout; Myocardial Contraction; Myocytes, Cardiac; Peptidyl-Dipeptidase A; Ventricular Dysfunction; Ventricular Remodeling | 2019 |
1,2,3,4,6-Penta-O-galloyl-β-d-glucose modulates perivascular inflammation and prevents vascular dysfunction in angiotensin II-induced hypertension.
Topics: Angiotensin II; Animals; Humans; Hydrolyzable Tannins; Hypertension; Inflammation; Injections, Subcutaneous; Male; Mice; Mice, Inbred C57BL; Oenothera; Tumor Cells, Cultured; Ventricular Dysfunction | 2019 |
A state of reversible compensated ventricular dysfunction precedes pathological remodelling in response to cardiomyocyte-specific activity of angiotensin II type-1 receptor in mice.
Topics: Angiotensin II; Animals; Cell Death; Fibrosis; Gene Expression Profiling; Gene Expression Regulation; Heart Function Tests; Humans; Hypertrophy, Left Ventricular; Macrophages; Male; Mice; Models, Cardiovascular; Myocytes, Cardiac; Receptor, Angiotensin, Type 1; Transgenes; Ventricular Dysfunction; Ventricular Remodeling | 2015 |
Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion.
Topics: Acetyl-CoA Carboxylase; Angiotensin II; Animals; Cardiomegaly; Diastole; Disease Models, Animal; Echocardiography; Energy Metabolism; Fatty Acids; Fibrosis; Gene Deletion; Magnetic Resonance Imaging; Male; Mice; Mice, Knockout; Myocardium; Organelle Biogenesis; Oxidation-Reduction; Oxidative Stress; Ventricular Dysfunction | 2016 |
Pirfenidone controls the feedback loop of the AT1R/p38 MAPK/renin-angiotensin system axis by regulating liver X receptor-α in myocardial infarction-induced cardiac fibrosis.
Topics: Angiotensin II; Animals; Cardiomegaly; Collagen Type I; Collagen Type III; Feedback, Physiological; Fibrosis; Hemodynamics; Hydroxyproline; Liver X Receptors; Male; Myocardial Infarction; Myocardium; p38 Mitogen-Activated Protein Kinases; Peptidyl-Dipeptidase A; Phosphorylation; Proto-Oncogene Mas; Proto-Oncogene Proteins; Pyridones; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Signal Transduction; Systole; Ventricular Dysfunction | 2017 |
Exercise training reduces cardiac angiotensin II levels and prevents cardiac dysfunction in a genetic model of sympathetic hyperactivity-induced heart failure in mice.
Topics: Angiotensin II; Animals; Blood Pressure; Disease Models, Animal; Heart; Heart Failure; Heart Rate; Male; Mice; Mice, Congenic; Mice, Inbred C57BL; Mice, Knockout; Models, Genetic; Myocardium; Physical Conditioning, Animal; Receptors, Adrenergic, alpha-2; Renin-Angiotensin System; Sympathetic Nervous System; Ventricular Dysfunction | 2009 |
Long-term administration of tempol attenuates postinfarct ventricular dysfunction and sympathetic activity in rats.
Topics: Angiotensin II; Animals; Cyclic N-Oxides; Male; Medulla Oblongata; Myocardial Infarction; Norepinephrine; Paraventricular Hypothalamic Nucleus; Rats; Rats, Sprague-Dawley; Spin Labels; Superoxides; Sympathetic Nervous System; Ventricular Dysfunction | 2009 |
Enalapril attenuates downregulation of Angiotensin-converting enzyme 2 in the late phase of ventricular dysfunction in myocardial infarcted rat.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Down-Regulation; Enalapril; Hemodynamics; Male; Myocardial Infarction; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Sprague-Dawley; Ventricular Dysfunction; Ventricular Function, Left | 2006 |
Asymmetric dimethylarginine (ADMA) induces vascular endothelium impairment and aggravates post-ischemic ventricular dysfunction in rats.
Topics: Acetylcholine; Angiotensin II; Animals; Aorta; Arginine; Blood Pressure; Endothelium, Vascular; Enzyme Inhibitors; Heart Rate; Male; Myocardial Reperfusion Injury; Nitrates; Nitrites; Perfusion; Rats; Rats, Wistar; RNA, Messenger; Vasoconstrictor Agents; Vasodilator Agents; Ventricular Dysfunction | 2007 |
Effect of high salt intake on local renin-angiotensin system and ventricular dysfunction following myocardial infarction in rats.
Topics: Angiotensin II; Animals; Blotting, Western; Body Weight; Enzyme-Linked Immunosorbent Assay; Heart; Male; Myocardial Contraction; Myocardial Infarction; Peptidyl-Dipeptidase A; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Renin; Renin-Angiotensin System; Sodium Chloride, Dietary; Time Factors; Ventricular Dysfunction; Ventricular Function, Left; Ventricular Pressure; Ventricular Remodeling | 2007 |