angiotensin ii has been researched along with Diabetic Cardiomyopathies in 20 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 14 (70.00) | 24.3611 |
2020's | 6 (30.00) | 2.80 |
Authors | Studies |
---|---|
Cheng, C; Cheng, J; Hao, P; Sui, W; Wang, X; Xing, Y; Xue, F; Zhang, C; Zhang, J; Zhang, M; Zhang, Y | 1 |
Gurusamy, N; Sukumaran, V; Venkatesh, S; Yalcin, HC | 1 |
Abderrahim, N; Adriani, W; Ahmed, F; Algarra, M; Amor, HB; Andreasi, V; Bailey, RL; Bettinardi, V; Bezzi, C; Bithe, SA; Boumnijel, I; Burr, SE; Cadmus, P; Calcaprina, B; Canevari, C; Catalfamo, B; Chen, J; Chen, X; Chen, Y; Clements, WH; Cornick, J; Cotton, SJ; De Cobelli, F; Djellabi, R; Falconi, M; Ghezzo, S; Gianolli, L; Guarnaccia, A; Guo, X; Hart, JD; Hasan, MM; Head-Gordon, M; Iwasaki, Y; Kalua, K; Kong, X; Laviola, G; Li, L; Li, M; Liu, M; Mao, Y; Mapelli, P; Meleke, H; Messina, A; Miller, WH; Muffatti, F; Neher, B; Palumbo, D; Partelli, S; Peláez, D; Pepe, M; Picchio, M; Presotto, L; Ranville, J; Samanes Gajate, AM; Samikwa, L; Schiavo Lena, M; Scifo, P; Shu, H; Soto, J; Sun, W; Talbot, JJ; Tu, J; Vaquer, F; Weng, L; Wu, J; Xu, T; Zhang, D; Zhao, B; Zhao, K; Zhao, Y | 1 |
Mosquera, J; Munoz, N; Pedreanez, A; Robalino, J; Tene, D | 1 |
Abraham, NG; Arad, M; Aravot, D; Arow, M; Freimark, D; Hochhauser, E; Kornowski, R; Nudelman, V; Shainberg, A; Waldman, M; Yadin, D | 1 |
Feng, Y; Wang, W; Wu, X; Xu, L; Yu, Z; Zhang, M; Zhang, S; Zhou, X | 1 |
Bai, Y; Cai, L; Cui, T; Ji, H; Jiang, X; Tan, Y; Wang, Y; Wintergerst, KA; Xin, Y; Zhou, S | 1 |
Abraham, NG; Arad, M; Aravot, D; Cohen, K; Gorfil, D; Hochhauser, E; Kornwoski, R; Laniado-Schwartzman, M; Nudelman, V; Waldman, M; Yadin, D | 1 |
Arad, M; Aravot, D; Hochhauser, E; Kornwoski, R; Nudelman, V; Peterson, SJ; Shainberg, A; Waldman, M; Zemel, R | 1 |
Baker, KM; Chandel, N; Kumar, R; Seqqat, R; Thomas, CM; Yong, QC | 1 |
Chen, RC; Ma, XJ; Sun, GB; Sun, X; Sun, XB; Wang, M; Yang, LJ; Yang, ZH | 1 |
Bian, ZY; Feng, H; Liao, HH; Ma, ZG; Tang, QZ; Yang, Z; Yuan, Y; Zhang, N | 1 |
Chen, C; Li, R; Manso, AM; Ross, RS | 1 |
Han, D; Rong, C; Wang, K; Zhang, Y | 1 |
Jiang, B; Lee, HC; Lu, T; Wang, XL | 1 |
Sharma, PL; Singh, K; Singh, T | 1 |
Mou, YL; Xie, YY; Zhang, YC | 1 |
Baker, KM; Kumar, R; Thomas, CM; Yong, QC | 1 |
Fujisawa, G; Iwazu, Y; Kimura, M; Kobayashi, E; Kobayashi, T; Kusano, E; Masuda, T; Murakami, T; Muto, S; Nonaka-Sarukawa, M; Sasaki, N; Shimada, K; Shinohara, M; Watanabe, Y | 1 |
Amin, R; Kariharan, T; Nanayakkara, G; Quindry, J; Viswaprakash, N; Zhong, J | 1 |
5 review(s) available for angiotensin ii and Diabetic Cardiomyopathies
Article | Year |
---|---|
Understanding diabetes-induced cardiomyopathy from the perspective of renin angiotensin aldosterone system.
Topics: Angiotensin II; Animals; Autophagy; Diabetic Cardiomyopathies; Humans; Inflammation; Obesity; Oxidative Stress; Peptidyl-Dipeptidase A; Receptors, Angiotensin; Renin-Angiotensin System | 2022 |
Diabetes, heart damage, and angiotensin II. What is the relationship link between them? A minireview.
Topics: Angiotensin II; Diabetes Mellitus; Diabetic Cardiomyopathies; Heart; Heart Injuries; Humans; Renin-Angiotensin System | 2022 |
Integrins and integrin-related proteins in cardiac fibrosis.
Topics: Age Factors; Aging; Angiotensin II; Animals; Blood Pressure; Carrier Proteins; Cytokines; Diabetic Cardiomyopathies; Epithelial-Mesenchymal Transition; Fibrosis; Humans; Integrins; Molecular Targeted Therapy; Myocardial Infarction; Myocardium; Protein Binding; Stress, Mechanical | 2016 |
[Research progress in relations between renin angiotensin system and diabetic cardiomyopathy].
Topics: Angiotensin I; Angiotensin II; Animals; Apoptosis; Diabetic Cardiomyopathies; Humans; NF-kappa B; Oligopeptides; Peptide Fragments; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Signal Transduction; Transforming Growth Factor beta1 | 2011 |
Intracardiac intracellular angiotensin system in diabetes.
Topics: Angiotensin II; Animals; Cricetinae; Diabetes Mellitus; Diabetic Cardiomyopathies; Disease Models, Animal; Heart; Hyperglycemia; Mice; Myocardium; Rats; Renin-Angiotensin System | 2012 |
1 trial(s) available for angiotensin ii and Diabetic Cardiomyopathies
14 other study(ies) available for angiotensin ii and Diabetic Cardiomyopathies
Article | Year |
---|---|
Angiotensin IV attenuates diabetic cardiomyopathy
Topics: Angiotensin II; Animals; Apoptosis; Autophagy; Blood Glucose; Cell Line; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Disease Models, Animal; Fibrosis; Forkhead Box Protein O1; Glucose; Male; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Oxidative Stress; Quinolones; Signal Transduction; Streptozocin; Ventricular Dysfunction, Left | 2021 |
Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy.
Topics: Angiotensin II; Animals; Benzhydryl Compounds; Biomarkers; Blood Glucose; Calcium Channels, L-Type; Calcium Signaling; Cells, Cultured; Diabetes Mellitus; Diabetic Cardiomyopathies; Disease Models, Animal; Fibrosis; Glucosides; Inflammation Mediators; Male; Mice, Inbred C57BL; Myocytes, Cardiac; Rats, Sprague-Dawley; Sodium-Calcium Exchanger; Sodium-Glucose Transporter 2 Inhibitors; Sodium-Hydrogen Exchanger 1; Ventricular Function, Left | 2020 |
Involvement of circHIPK3 in the pathogenesis of diabetic cardiomyopathy in mice.
Topics: Angiotensin II; Animals; Cell Proliferation; Cells, Cultured; Collagen Type I, alpha 1 Chain; Collagen Type III; Diabetic Cardiomyopathies; Disease Models, Animal; Fibroblasts; Fibrosis; Gene Expression Regulation; Male; Mice, Inbred C57BL; MicroRNAs; Myocardium; RNA, Circular; Signal Transduction | 2021 |
Sulforaphane prevents angiotensin II-induced cardiomyopathy by activation of Nrf2 via stimulating the Akt/GSK-3ß/Fyn pathway.
Topics: Angiotensin II; Animals; Diabetic Cardiomyopathies; Disease Models, Animal; Glycogen Synthase Kinase 3 beta; Heart; Humans; Isothiocyanates; Male; Mice, Knockout; NF-E2-Related Factor 2; Oxidative Stress; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-fyn; Signal Transduction; Sulfoxides | 2018 |
Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving 'SIRT1 and PGC-1α'.
Topics: Angiotensin II; Animals; Caloric Restriction; Cells, Cultured; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Disease Models, Animal; Fibrosis; Hypertension; Male; Mice, Inbred C57BL; Myocardium; Obesity; Oxidative Stress; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Rats, Sprague-Dawley; Signal Transduction; Sirtuin 1; Ventricular Remodeling | 2018 |
The Role of Heme Oxygenase 1 in the Protective Effect of Caloric Restriction against Diabetic Cardiomyopathy.
Topics: Angiotensin II; Animals; Blood Glucose; Caloric Restriction; Carbazoles; Cardiomegaly; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Heme Oxygenase-1; Male; Malondialdehyde; Mesoporphyrins; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Obesity; Oxidative Stress; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; PPAR gamma; Protoporphyrins; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Signal Transduction; Sirtuin 1 | 2019 |
Angiotensin type 1a receptor-deficient mice develop diabetes-induced cardiac dysfunction, which is prevented by renin-angiotensin system inhibitors.
Topics: Amides; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Benzazepines; Cells, Cultured; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Disease Models, Animal; Down-Regulation; Fumarates; Kallikreins; Kininogens; Kinins; Mice; Mice, Knockout; Myocytes, Cardiac; Receptor, Angiotensin, Type 1; Renin; Renin-Angiotensin System; Tetrazoles; Ultrasonography; Valine; Valsartan | 2013 |
Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis.
Topics: Angiotensin II; Animals; Apoptosis; Caspases; Cell Line; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Enzyme-Linked Immunosorbent Assay; In Situ Nick-End Labeling; In Vitro Techniques; Male; Mice; Mice, Inbred C57BL; NADPH Oxidases; Oxidative Stress; Quercetin; Rats; Reactive Oxygen Species; Streptozocin | 2014 |
Oleanolic acid alleviated pressure overload-induced cardiac remodeling.
Topics: Angiotensin II; Animals; Anti-Inflammatory Agents; Antioxidants; Blood Glucose; Cardiomegaly; Diabetic Cardiomyopathies; Echocardiography; Fibrosis; Glucose; Hypertension; Male; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Oleanolic Acid; Proto-Oncogene Proteins c-akt; RNA, Messenger; Signal Transduction; TOR Serine-Threonine Kinases; Ventricular Remodeling | 2015 |
[Protective effect and mechanism of β-CM7 on renin angiotensin system & diabetic cardiomyopathy].
Topics: Angiotensin II; Animals; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Endorphins; Male; Myocardium; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptors, G-Protein-Coupled; Renin-Angiotensin System; RNA, Messenger | 2016 |
Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Benzimidazoles; Caveolae; Cells, Cultured; Coronary Vessels; Diabetic Cardiomyopathies; HEK293 Cells; Humans; Kv1.3 Potassium Channel; Large-Conductance Calcium-Activated Potassium Channel alpha Subunits; Large-Conductance Calcium-Activated Potassium Channel beta Subunits; Male; Mice, Inbred C57BL; Mice, Knockout; Muscle, Smooth, Vascular; Mutation; Myocardial Reperfusion Injury; Protein Transport; Receptor, Angiotensin, Type 1; Recombinant Proteins | 2016 |
Beneficial effects of angiotensin (1-7) in diabetic rats with cardiomyopathy.
Topics: Angiotensin I; Angiotensin II; Animals; Blood Glucose; Collagen; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Dyslipidemias; Fibrosis; Heart Ventricles; Hypertrophy, Left Ventricular; Lipids; Nitrates; Nitrites; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Time Factors; Ventricular Function, Left; Ventricular Pressure | 2011 |
Heart angiotensin II-induced cardiomyocyte hypertrophy suppresses coronary angiogenesis and progresses diabetic cardiomyopathy.
Topics: Angiotensin II; Angiotensin Receptor Antagonists; Animals; Apoptosis; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Disease Models, Animal; Hypertrophy; Hypertrophy, Left Ventricular; Imidazoles; Male; Myocytes, Cardiac; Neovascularization, Physiologic; Olmesartan Medoxomil; Rats; Rats, Mutant Strains; Rats, Sprague-Dawley; Tetrazoles; Thrombospondin 1; Vascular Endothelial Growth Factor A; Ventricular Dysfunction, Left | 2012 |
PPARγ activation improves the molecular and functional components of I(to) remodeling by angiotensin II.
Topics: Angiotensin II; Animals; Atrial Remodeling; Cardiotonic Agents; Cells, Cultured; Diabetic Cardiomyopathies; Down-Regulation; Hypoglycemic Agents; Male; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Myocytes, Cardiac; Oxidative Stress; Potassium Channels, Voltage-Gated; PPAR gamma; Protein Transport; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Rosiglitazone; Thiazolidinediones; Ventricular Remodeling | 2013 |