angiotensin ii has been researched along with Cardiomyopathy, Hypertrophic in 51 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 7 (13.73) | 18.7374 |
1990's | 11 (21.57) | 18.2507 |
2000's | 19 (37.25) | 29.6817 |
2010's | 13 (25.49) | 24.3611 |
2020's | 1 (1.96) | 2.80 |
Authors | Studies |
---|---|
Du, Y; Guan, C; Huang, Z; Li, P; Wang, K; Zhang, Y; Zhou, M | 1 |
Chen, RJ; Chen, YF; Day, CH; Huang, CY; Lee, NH; Lin, CH; Rajendran, P; Viswanadha, VP; Yang, JJ | 1 |
He, W; Jiang, H; Zhang, C | 1 |
Li, Q; Lin, L; Liu, X; Ni, Y; Qin, S; Wei, J; Zhang, C | 1 |
Feng, YQ; Geng, QS; Hu, ZQ; Huang, L; Huang, YQ; Shan, ZX; Yu, XJ; Zhu, JN | 1 |
Chen, Y; Li, C; Liu, J; Liu, Y; Luo, C; Sun, D; Wang, Z; Wen, S | 1 |
Chen, Y; Iwaya, S; Oikawa, M; Takeishi, Y | 1 |
Basu, R; Fan, D; Fernandez-Patron, C; Kassiri, Z; Oudit, GY; Patel, V; Samokhvalov, V; Seubert, JM; Shen, M; Takawale, A; Wang, X | 1 |
Schlüter, KD; Wenzel, S | 1 |
Kaludercic, N; Paolocci, N; Reggiani, C | 1 |
Chang, SK; Sun, CW; Yao, FR | 1 |
Gao, S; Kim, JH; Kim, SH; Oh, YB; Park, WH; Shah, A | 1 |
Bai, H; Li, L; Liu, J | 1 |
Chandrasekar, B; Delafontaine, P; Prabhu, SD; Shanmugam, P; Valente, AJ; Venkatesan, B; Yoshida, T | 1 |
Marber, MS; Martin, ED | 1 |
Hoit, BD; Lee, HG; Liner, A; Richardson, SL; Smith, MA; Wolfram, JA; Zhu, X | 1 |
Sun, YK; Wang, SR; Yu, Y | 1 |
Lai, WY; Liu, Y; Ouyang, P; Wang, MH; Xu, DL | 1 |
deChâtel, R; Földes, G; Ilves, M; Lakó-Futó, Z; Leskinen, H; Ruskoaho, H; Sármán, B; Skoumal, R; Szokodi, I; Tokola, H; Tóth, M; Vuolteenaho, O | 1 |
Fujita, T; Goto, A; Hirata, Y; Nagai, R; Nishimatsu, H; Oba, S; Omata, M; Satonaka, H; Suzuki, E; Takeda, R | 1 |
Huang, L; Yang, YJ; Yu, LJ; Zhu, SJ | 1 |
Averill, DB; Brosnihan, KB; Ferrario, CM; Gallagher, PE; Ishiyama, Y; Tallant, EA | 1 |
Brandes, RP; Busse, R; Geiger, H; Jung, O; Pedrazzini, T; Schreiber, JG | 1 |
Fujiwara, H; Nishigaki, K | 1 |
Matsuda, H; Matsumoto, K; Mizuno, S; Nakamura, T; Sawa, Y | 1 |
Eto, T; Imamura, T; Kitamura, K; Kuwasako, K; Onitsuka, H; Yamaga, J | 1 |
Ferrario, CM; Grobe, JL; Huentelman, MJ; Katovich, MJ; Mecca, AP; Raizada, MK; Stewart, JM; Vazquez, J | 1 |
Akazawa, H; Komuro, I; Yasuda, N | 1 |
de Resende, MM; Greene, AS; Kriegel, AJ | 1 |
Han, J; Jung, ID; Kang, SH; Kim, N; Ko, JH; Park, WS; Park, YM; Son, YK; Warda, M | 1 |
Kanno, M; Kitabatake, A; Kusaka, M; Nakaya, H; Sakuma, I; Tohse, N; Uemura, H; Yamashita, T; Yasuda, H | 1 |
Sakata, Y | 1 |
Komuro, I; Yamazaki, T; Yazaki, Y | 1 |
Katz, AM | 1 |
Yamazaki, T; Yazaki, Y | 1 |
Böhm, M; Ettelbrück, S; Flesch, M; Knorr, A; Pinto, Y; Schiffer, F; Stasch, JP; Zolk, O | 1 |
Christy, DH; Davison, G; Hall, CS; Lanza, GM; Miller, JG; Scott, MJ; Wickline, SA | 1 |
Erdmann, J; Fleck, E; Guse, M; Kallisch, H; Regitz-Zagrosek, V | 1 |
Ito, S; Matsuoka, M; Mishiro, Y; Oki, T; Onose, Y; Tabata, T; Wakatsuki, T; Yamada, H | 1 |
Zhan, CD | 1 |
Yamashita, T | 1 |
Hanada, H; Hirota, Y; Kawamura, K; Suwa, M; Yoneda, Y | 1 |
Apstein, CS; Dzau, VJ; Hirsch, AT; Lorell, BH; Schunkert, H; Tang, SS | 1 |
Imaizumi, T; Nakamura, M; Sueishi, K; Takeshita, A; Yamamoto, K | 1 |
Hausdorf, G; Nienaber, CA; Siglow, V | 1 |
Imaizumi, T; Nakamura, M; Takeshita, A; Yamamoto, K | 1 |
Auger, P; Marquis, Y; Wigle, ED | 2 |
Adelman, AG; Auger, P; Marquis, Y; Wigle, ED | 1 |
Baldelli, P; Malfanti, PL; Massi, A; Rosselli, M; Salvatore, L; Santini, L; Zerauschek, M | 1 |
Adelman, AG; Bigelow, WG; Felderhof, CH; Trimble, AS; Wigle, ED | 1 |
6 review(s) available for angiotensin ii and Cardiomyopathy, Hypertrophic
Article | Year |
---|---|
Angiotensin II: a hormone involved in and contributing to pro-hypertrophic cardiac networks and target of anti-hypertrophic cross-talks.
Topics: Angiotensin II; Animals; Apoptosis; Cardiomyopathy, Hypertrophic; Humans; Models, Biological; Myocytes, Cardiac; Reactive Oxygen Species; Receptors, Angiotensin; Signal Transduction | 2008 |
[Natriuretic peptides and cardiomyopathy].
Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Atrial Natriuretic Factor; Biomarkers; Calcium Channel Blockers; Cardiomyopathy, Hypertrophic; Disease Models, Animal; Humans; Natriuretic Peptide, Brain | 2004 |
[Mechanical stress in cardiovascular remodeling].
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Cardiomyopathy, Hypertrophic; Cardiovascular System; Humans; Mechanoreceptors; Receptor, Angiotensin, Type 1; Stress, Mechanical | 2006 |
[Hypertrophic responses to mechanical stretch in cardiac myocytes].
Topics: Angiotensin II; Animals; Cardiomyopathy, Hypertrophic; Genes, fos; Heart; Humans; Myocardium; Protein Kinase C; Sodium Channels; Stress, Mechanical | 1996 |
The cardiomyopathy of overload: an unnatural growth response.
Topics: Adult; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Apoptosis; Bradykinin; Cardiomyopathy, Hypertrophic; Cell Division; Growth Substances; Heart Failure; Hemodynamics; Humans; Myocardium; Nitrates; Vasodilator Agents | 1995 |
[Molecular mechanism of cardiac hypertrophy and dysfunction].
Topics: Angiotensin II; Animals; Calcium-Calmodulin-Dependent Protein Kinases; Cardiomyopathy, Hypertrophic; Endothelin-1; Heart Failure; Humans; Hypertension; Proto-Oncogene Proteins c-raf; Rats; Signal Transduction; Stress, Mechanical | 1997 |
45 other study(ies) available for angiotensin ii and Cardiomyopathy, Hypertrophic
Article | Year |
---|---|
IRX2 activated by jumonji domain-containing protein 2A is crucial for cardiac hypertrophy and dysfunction in response to the hypertrophic stimuli.
Topics: Angiotensin II; Animals; beta Catenin; Cardiomegaly; Cardiomyopathy, Hypertrophic; Homeodomain Proteins; Jumonji Domain-Containing Histone Demethylases; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Transcription Factors; Ventricular Dysfunction | 2023 |
Tanshinone IIA Inhibits β-Catenin Nuclear Translocation and IGF-2R Activation via Estrogen Receptors to Suppress Angiotensin II-Induced H9c2 Cardiomyoblast Cell Apoptosis.
Topics: Abietanes; Angiotensin II; Animals; Apoptosis; beta Catenin; Cardiomyopathy, Hypertrophic; Cell Line; Cell Nucleus; Drugs, Chinese Herbal; Humans; Myocytes, Cardiac; Phosphorylation; Protein Transport; Rats; Receptor, IGF Type 2; Receptors, Estrogen; Salvia miltiorrhiza; Signal Transduction | 2017 |
The Effects of Dracocephalum Heterophyllum Benth Flavonoid on Hypertrophic Cardiomyocytes Induced by Angiotensin II in Rats.
Topics: Angiotensin II; Animals; Animals, Newborn; Atrial Natriuretic Factor; Cardiomegaly; Cardiomyopathy, Hypertrophic; Cells, Cultured; China; Flavonoids; Heart Ventricles; Medicine, Tibetan Traditional; Myocardium; Myocytes, Cardiac; Natriuretic Peptide, Brain; Primary Cell Culture; Rats; Rats, Sprague-Dawley; Signal Transduction | 2018 |
ERK1/2 communicates GPCR and EGFR signaling pathways to promote CTGF-mediated hypertrophic cardiomyopathy upon Ang-II stimulation.
Topics: Angiotensin II; Animals; Butadienes; Cardiomegaly; Cardiomyopathy, Hypertrophic; Cell Enlargement; Cell Line; Connective Tissue Growth Factor; Disease Models, Animal; ErbB Receptors; Heart Ventricles; MAP Kinase Signaling System; Myocytes, Cardiac; Nitriles; Phosphorylation; Rats; Receptors, G-Protein-Coupled; Signal Transduction | 2019 |
MicroRNA-92b-3p suppresses angiotensin II-induced cardiomyocyte hypertrophy via targeting HAND2.
Topics: 3' Untranslated Regions; Angiotensin II; Animals; Basic Helix-Loop-Helix Transcription Factors; Cardiomegaly; Cardiomyopathy, Hypertrophic; Disease Models, Animal; Heart Defects, Congenital; Heart Failure; Heart Ventricles; Mice; Mice, Inbred C57BL; MicroRNAs; Myocardium; Myocytes, Cardiac; RNA, Small Interfering; Signal Transduction; Up-Regulation | 2019 |
Expression Profile of microRNAs in Hypertrophic Cardiomyopathy and Effects of microRNA-20 in Inducing Cardiomyocyte Hypertrophy Through Regulating Gene
Topics: 3' Untranslated Regions; Adult; Angiotensin II; Animals; Cardiomyopathy, Hypertrophic; Case-Control Studies; Female; Gene Expression Regulation; GTP Phosphohydrolases; Humans; Male; Membrane Proteins; MicroRNAs; Middle Aged; Mitochondrial Proteins; Myocytes, Cardiac; Rats, Wistar | 2019 |
Phosphodiesterase 3A1 protects the heart against angiotensin II-induced cardiac remodeling through regulation of transforming growth factor-β expression.
Topics: Angiotensin II; Animals; Blotting, Western; Cardiomyopathy, Hypertrophic; Cyclic Nucleotide Phosphodiesterases, Type 3; Disease Models, Animal; Echocardiography; Heart Ventricles; Mice; Mice, Transgenic; Transforming Growth Factor beta; Vasoconstrictor Agents; Ventricular Remodeling | 2014 |
A Disintegrin and Metalloprotease-17 Regulates Pressure Overload-Induced Myocardial Hypertrophy and Dysfunction Through Proteolytic Processing of Integrin β1.
Topics: ADAM17 Protein; Angiotensin II; Animals; Cardiomyopathy, Hypertrophic; Cells, Cultured; Disease Models, Animal; Disintegrins; Echocardiography, Doppler; Hypertension; Hypertrophy, Left Ventricular; Mice; Mice, Knockout; Myocytes, Cardiac; Proteolysis; Random Allocation; Rats; Ventricular Dysfunction, Left | 2016 |
Genes, geography and geometry: the "critical mass" in hypertrophic cardiomyopathy.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Cardiomyopathy, Hypertrophic; Humans; Hypertrophy, Left Ventricular; Muscle Proteins; Mutation | 2009 |
Morton lentil extract attenuated angiotensin II-induced cardiomyocyte hypertrophy via inhibition of intracellular reactive oxygen species levels in vitro.
Topics: Angiotensin II; Animals; Antioxidants; Cardiomyopathy, Hypertrophic; Cells, Cultured; Humans; Lens Plant; Myocytes, Cardiac; Oxidative Stress; Plant Extracts; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species | 2010 |
Endogenous angiotensin II suppresses stretch-induced ANP secretion via AT1 receptor pathway.
Topics: Angiotensin II; Angiotensin Receptor Antagonists; Animals; Atrial Natriuretic Factor; Blood Pressure; Cardiomyopathy, Hypertrophic; Extracellular Fluid; Gene Expression; Heart Atria; Hypertension, Renal; Imidazoles; Losartan; Male; Myocardial Contraction; Peptide Fragments; Perfusion; Pyridines; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Reflex, Stretch | 2011 |
[Alterations of cardiac G a q/11 in two-kidney one-slip renal hypertensive and spontaneously hypertensive rats].
Topics: Angiotensin II; Animals; Cardiomyopathy, Hypertrophic; Hypertension, Renal; Male; Myocardium; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Rats, Wistar | 2003 |
Angiotensin-II type 1 receptor and NOX2 mediate TCF/LEF and CREB dependent WISP1 induction and cardiomyocyte hypertrophy.
Topics: Angiotensin II; Animals; beta Catenin; Cardiomyopathy, Hypertrophic; CCN Intercellular Signaling Proteins; Cyclic AMP Response Element-Binding Protein; Gene Expression Regulation, Neoplastic; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Intracellular Signaling Peptides and Proteins; Male; Mitogen-Activated Protein Kinase 3; Myocytes, Cardiac; NADPH Oxidases; p38 Mitogen-Activated Protein Kinases; Protein Binding; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; RNA, Messenger; Superoxides; TCF Transcription Factors; Vasoconstrictor Agents | 2011 |
Will o' the WISP1: a novel mediator of Ang-II induced cardiomyocyte hypertrophy.
Topics: Angiotensin II; Animals; Cardiomyopathy, Hypertrophic; CCN Intercellular Signaling Proteins; Humans; Intracellular Signaling Peptides and Proteins; Myocytes, Cardiac; Proto-Oncogene Proteins; Vasoconstrictor Agents | 2011 |
The role of E2F1 in the development of hypertrophic cardiomyopathy.
Topics: Angiotensin II; Animals; Apoptosis; Atrial Natriuretic Factor; Cardiomegaly; Cardiomyopathy, Hypertrophic; Cardiotonic Agents; Cell Cycle; E2F1 Transcription Factor; Gene Expression Regulation; Humans; Isoproterenol; Male; Mice; Mice, Knockout; Mice, Transgenic; Myocytes, Cardiac; RNA, Messenger; Signal Transduction; Vasoconstrictor Agents | 2011 |
[Effects of ligustrazine on the mitochondrial structure and functions in the process myocardial hypertrophy].
Topics: Angiotensin II; Animals; Cardiomyopathy, Hypertrophic; Cells, Cultured; Electron Transport Complex IV; Mitochondria, Heart; Monoamine Oxidase; Myocytes, Cardiac; Pyrazines; Rats; Rats, Sprague-Dawley | 2012 |
[Regulation of cyclin-dependent kinase inhibitors by mitogen-activated protein kinase in angiotensin II-stimulated vascular smooth muscle cell hypertrophy].
Topics: Angiotensin II; Animals; Cardiomyopathy, Hypertrophic; Cell Cycle Proteins; Cyclin-Dependent Kinase Inhibitor p27; Cyclin-Dependent Kinases; Disease Models, Animal; Male; Mitogen-Activated Protein Kinases; Muscle, Smooth, Vascular; Rats; Rats, Sprague-Dawley; Tumor Suppressor Proteins | 2002 |
Evidence for a functional role of angiotensin II type 2 receptor in the cardiac hypertrophic process in vivo in the rat heart.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin II Type 2 Receptor Blockers; Animals; Atrial Natriuretic Factor; Blood Pressure; Cardiomyopathy, Hypertrophic; Fibroblast Growth Factor 1; Gene Expression Regulation; Genes, fos; Heart Rate; Hypertension; Imidazoles; Infusion Pumps, Implantable; Losartan; Male; Natriuretic Peptide, Brain; Proto-Oncogene Proteins c-fos; Pyridines; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 2; RNA, Messenger; Vascular Endothelial Growth Factor A | 2003 |
Calcineurin promotes the expression of monocyte chemoattractant protein-1 in vascular myocytes and mediates vascular inflammation.
Topics: Angiotensin II; Animals; Calcineurin; Calcium Signaling; Calcium-Calmodulin-Dependent Protein Kinases; Cardiomyopathy, Hypertrophic; Cells, Cultured; Chemokine CCL2; Cyclosporine; Femoral Artery; Gene Expression Regulation; Humans; Hyperplasia; Imidazoles; Macrophages; MAP Kinase Kinase 6; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Promoter Regions, Genetic; Protein Biosynthesis; Proteins; Pyridines; Rats; Recombinant Fusion Proteins; RNA, Messenger; Signal Transduction; Tetrazoles; Transcription, Genetic; Tunica Intima; Valine; Valsartan; Vasculitis | 2004 |
[CaN-NFAT3 signal pathway: a crucial hinge relates Ca2+ signal with cardiomyocyte hypertrophy].
Topics: Angiotensin II; Animals; Animals, Newborn; Blotting, Western; Calcium; Calpain; Cardiomyopathy, Hypertrophic; Cells, Cultured; DNA-Binding Proteins; GATA4 Transcription Factor; Myocytes, Cardiac; NFATC Transcription Factors; Nuclear Proteins; Peptide Fragments; Rats; Rats, Wistar; Signal Transduction; Transcription Factors | 2004 |
Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors.
Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Carboxypeptidases; Cardiomyopathy, Hypertrophic; Coronary Vessels; Disease Models, Animal; Enzyme Induction; Imidazoles; Ligation; Losartan; Male; Myocardial Infarction; Myocardium; Olmesartan Medoxomil; Peptide Fragments; Peptidyl-Dipeptidase A; Pyridines; Rats; Rats, Inbred Lew; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; RNA, Messenger; Tetrazoles; Ventricular Remodeling | 2004 |
gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension.
Topics: 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt; Acetylcholine; Angiotensin II; Animals; Antioxidants; Aorta; Bacterial Toxins; Cardiomyopathy, Hypertrophic; Cytochromes b; Disease Models, Animal; Endothelium, Vascular; Enzyme Inhibitors; ErbB Receptors; Glycoproteins; Hypertension, Renovascular; Indoles; Male; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; Mice, Knockout; NADPH Oxidase 2; NADPH Oxidases; Nitric Oxide; Organ Culture Techniques; Polyethylene Glycols; Protein Kinase C; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins c-akt; Quinazolines; Superoxide Dismutase; Superoxides; Tyrphostins; Vasodilation; Vasodilator Agents | 2004 |
Hepatocyte growth factor prevents tissue fibrosis, remodeling, and dysfunction in cardiomyopathic hamster hearts.
Topics: Angiotensin II; Animals; Cardiomyopathy, Dilated; Cardiomyopathy, Hypertrophic; CHO Cells; Cricetinae; Fibrosis; Gene Expression; Hepatocyte Growth Factor; Humans; Male; Mesocricetus; Myocytes, Cardiac; Proto-Oncogene Proteins c-met; Transforming Growth Factor beta; Transforming Growth Factor beta1; Ultrasonography; Vasoconstrictor Agents; Ventricular Remodeling | 2005 |
Angiotensin II stimulates cardiac adrenomedullin production and causes accumulation of mature adrenomedullin independently of hemodynamic stress in vivo.
Topics: Adrenomedullin; Angiotensin II; Animals; Cardiomyopathy, Hypertrophic; Gene Expression Regulation; Heart Ventricles; Male; Myocardium; Peptides; Rats; Vasoconstrictor Agents | 2005 |
Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats.
Topics: Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Animals, Newborn; Blood Pressure; Body Weight; Carboxypeptidases; Cardiomyopathy, Hypertrophic; Endomyocardial Fibrosis; Gene Expression; Genetic Vectors; Heart; Lentivirus; Mice; Myocardium; Organ Size; Peptidyl-Dipeptidase A; Rats; Rats, Sprague-Dawley; Transduction, Genetic | 2005 |
Combined effects of low-dose spironolactone and captopril therapy in a rat model of genetic hypertrophic cardiomyopathy.
Topics: Administration, Oral; Aldosterone; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Animals, Congenic; Atrial Natriuretic Factor; Blood Pressure; Captopril; Cardiomyopathy, Hypertrophic; Disease Models, Animal; Diuretics; Dose-Response Relationship, Drug; Drug Therapy, Combination; Echocardiography; Injections, Subcutaneous; Myocardium; Organ Size; Random Allocation; Rats; Rats, Inbred Strains; Spironolactone; Ventricular Function, Left; Weight Loss | 2006 |
Increased inhibition of inward rectifier K+ channels by angiotensin II in small-diameter coronary artery of isoproterenol-induced hypertrophied model.
Topics: Angiotensin II; Animals; Blotting, Western; Cardiomyopathy, Hypertrophic; Cells, Cultured; Coronary Vessels; Disease Models, Animal; Electrophysiology; Endothelium, Vascular; Male; Muscle, Smooth, Vascular; Potassium Channels, Inwardly Rectifying; Probability; Rabbits; Random Allocation; Reference Values; Sensitivity and Specificity; Vasoconstrictor Agents; Vasodilation | 2007 |
Depressed responsiveness to angiotensin II in ventricular myocytes of hypertrophic cardiomyopathic Syrian hamster.
Topics: Action Potentials; Angiotensin II; Animals; Calcium; Cardiomyopathy, Hypertrophic; Cricetinae; Heart Ventricles; Mesocricetus; Myocardial Contraction; Papillary Muscles; Receptors, Angiotensin; Renin-Angiotensin System | 1994 |
[Tissue factors contributing to cardiac hypertrophy in cardiomyopathic hamsters (BIO14.6): involvement of transforming growth factor-beta 1 and tissue renin-angiotensin system in the progression of cardiac hypertrophy].
Topics: Angiotensin II; Animals; Cardiomegaly; Cardiomyopathy, Hypertrophic; Cells, Cultured; Cricetinae; Guinea Pigs; Male; Mesocricetus; Myocardium; Peptidyl-Dipeptidase A; Phosphatidylinositols; Renin-Angiotensin System; RNA, Messenger; Transforming Growth Factor beta | 1993 |
Angiotensin receptor antagonism and angiotensin converting enzyme inhibition improve diastolic dysfunction and Ca(2+)-ATPase expression in the sarcoplasmic reticulum in hypertensive cardiomyopathy.
Topics: Angiotensin I; Angiotensin II; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Atrial Natriuretic Factor; Blotting, Northern; Blotting, Western; Calcium-Transporting ATPases; Captopril; Cardiomyopathy, Hypertrophic; Diastole; Dihydropyridines; Disease Models, Animal; Heart Ventricles; Hemodynamics; Hypertension; Mice; Mice, Transgenic; Myocardium; Rats; Rats, Sprague-Dawley; Renin; RNA, Messenger; Sarcoplasmic Reticulum; Tetrazoles | 1997 |
Angiotensin II receptor blockade in Syrian hamster (T0-2) cardiomyopathy does not affect microscopic cardiac material properties: implications for mechanisms of tissue remodeling.
Topics: Angiotensin II; Angiotensin Receptor Antagonists; Animals; Antihypertensive Agents; Blood Pressure; Body Weight; Cardiomyopathy, Hypertrophic; Collagen; Cricetinae; Echocardiography; Heart; Imidazoles; Male; Mesocricetus; Myocardium; Organ Size; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, Angiotensin; Tetrazoles | 1997 |
Novel intronic polymorphism (+1675G/A) in the human angiotensin II subtype 2 receptor gene.
Topics: Angiotensin II; Cardiomyopathy, Hypertrophic; Gene Frequency; Humans; Hypertension; Introns; Polymorphism, Genetic; Receptor, Angiotensin, Type 2; Receptors, Angiotensin | 2000 |
Use of angiotensin II stress pulsed tissue Doppler imaging to evaluate regional left ventricular contractility in patients with hypertrophic cardiomyopathy.
Topics: Analysis of Variance; Angiotensin II; Blood Flow Velocity; Cardiomyopathy, Hypertrophic; Case-Control Studies; Echocardiography, Doppler, Pulsed; Female; Humans; Infusions, Intravenous; Male; Middle Aged; Myocardial Contraction; Vasoconstrictor Agents; Ventricular Dysfunction, Left | 2000 |
[The role of nitric oxide in the prevention of myocardial hypertrophic response and its mechanisms].
Topics: Academic Dissertations as Topic; Angiotensin II; Animals; Cardiomyopathy, Hypertrophic; Cyclic GMP; Endothelin-1; Myocardium; Nitric Oxide; Nitric Oxide Synthase; Norepinephrine; Proto-Oncogene Proteins c-fos; Rats; Ventricular Pressure | 2000 |
[Electromechanical responsiveness to alpha 1-adrenoceptor and angiotensin II receptor stimulation in the ventricular myocardium of hypertrophied and dilated cardiomyopathic Syrian hamsters].
Topics: Action Potentials; Angiotensin II; Animals; Cardiomyopathy, Dilated; Cardiomyopathy, Hypertrophic; Cricetinae; Disease Models, Animal; Electric Stimulation; In Vitro Techniques; Mesocricetus; Myocardial Contraction; Papillary Muscles; Phenylephrine; Propranolol; Receptors, Adrenergic, alpha; Receptors, Angiotensin | 1992 |
Noninvasive detection of left ventricular diastolic dysfunction using M-mode echocardiography to assess left ventricular posterior wall kinetics in hypertrophic cardiomyopathy.
Topics: Angiotensin II; Cardiac Catheterization; Cardiomyopathy, Hypertrophic; Echocardiography; Echocardiography, Doppler; Female; Humans; Male; Middle Aged; Myocardial Contraction; Ventricular Function, Left | 1992 |
Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation.
Topics: Angiotensin I; Angiotensin II; Animals; Blotting, Northern; Cardiomyopathy, Hypertrophic; Coronary Circulation; Gene Expression; Hemodynamics; Male; Myocardial Contraction; Myocardium; Peptidyl-Dipeptidase A; Rats; Rats, Inbred Strains; RNA, Messenger; Vascular Resistance | 1990 |
Limited maximal vasodilator capacity of forearm resistance vessels in patients with hypertrophic cardiomyopathy.
Topics: Adult; Angiotensin II; Cardiomyopathy, Hypertrophic; Female; Forearm; Humans; Hyperemia; Male; Muscle, Smooth, Vascular; Plethysmography; Regional Blood Flow; Vascular Resistance; Vasodilation | 1990 |
Effects of increasing afterload on early diastolic dysfunction in hypertrophic non-obstructive cardiomyopathy.
Topics: Adult; Angiotensin II; Blood Pressure; Cardiomyopathy, Hypertrophic; Diastole; Echocardiography; Female; Heart Ventricles; Humans; Male; Middle Aged; Myocardial Contraction | 1988 |
Limited maximal vasodilator capacity of forearm resistance vessels in hypertrophic cardiomyopathy.
Topics: Adult; Angiotensin II; Blood Pressure; Cardiomyopathy, Hypertrophic; Female; Forearm; Humans; Male; Middle Aged; Regional Blood Flow; Vascular Resistance; Vasodilation | 1987 |
Muscular subaortic stenosis. The direct relation between the intraventricular pressure difference and the left ventricular ejection time.
Topics: Amyl Nitrite; Angiotensin II; Aorta; Blood Circulation; Blood Pressure; Cardiac Catheterization; Cardiomyopathy, Hypertrophic; Heart Ventricles; Humans; Isoproterenol; Norepinephrine | 1967 |
Pharmacodynamics of mitral insufficiency in muscular subaortic stenosis.
Topics: Angiotensin II; Cardiomyopathy, Hypertrophic; Humans; Mitral Valve Insufficiency | 1967 |
Mitral regurgitation in muscular subaortic stenosis.
Topics: Amyl Nitrite; Angiotensin II; Aorta; Blood Pressure; Cardiomyopathy, Hypertrophic; Dye Dilution Technique; Heart Ventricles; Humans; Indocyanine Green; Isoproterenol; Mitral Valve Insufficiency; Myocardium | 1969 |
[Clinico-hemodynamic findings in obstructive hypertrophic myocardiopathy].
Topics: Angiotensin II; Cardiac Catheterization; Cardiomyopathy, Hypertrophic; Hemodynamics; Humans; Isoproterenol; Kinetocardiography; Phonocardiography | 1968 |
The treatment of muscular subaortic stenosis.
Topics: Angiotensin II; Blood Pressure; Cardiomyopathy, Hypertrophic; Female; Humans; Methods; Mitral Valve Insufficiency; Postoperative Complications; Prognosis; Propranolol; Prospective Studies | 1974 |