angiotensin ii has been researched along with Cardiac Remodeling, Ventricular in 455 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 12 (2.64) | 18.2507 |
2000's | 153 (33.63) | 29.6817 |
2010's | 208 (45.71) | 24.3611 |
2020's | 82 (18.02) | 2.80 |
Authors | Studies |
---|---|
Liu, A; Shang, Z; Zhang, Y | 1 |
Billoff, S; Bode-Böger, SM; Bornstein, SR; Deussen, A; Jarzebska, N; Kolouschek, A; Kopaliani, I; Mangoni, AA; Martens-Lobenhoffer, J; Ragavan, VN; Rodionov, RN; Weiss, N | 1 |
Guo, S; Han, X; Huang, F; Jiao, M; Ma, W; Mi, S; Niu, Q; Zhan, H; Zhang, K; Zhao, Z | 1 |
Chen, C; Gao, Z; Meng, Y; Wang, L; Zhang, X; Zheng, C; Zheng, Y | 1 |
Feng, Y; Geng, C; Li, Z; Tang, Y; Wang, J; Yang, H; Yang, Y; Zhao, H | 1 |
Bajpai, G; Bredemeyer, A; Feng, G; Förster, I; Koenig, A; Kreisel, D; Lai, L; Lavine, KJ; Leuschner, F; Lokshina, I; Ma, P | 1 |
Chen, X; Gu, Y; Li, Y; Liu, Y; Zhang, S | 1 |
Lin, L; Liu, A; Mei, Y; Xun, S; Zhang, Y; Zhou, G | 1 |
Dai, S; Hong, X; Huang, W; Liang, X; Lin, J; Lin, S; Wang, W; Ye, B | 1 |
Hua, D; Li, P; Li, Y; Mao, Y; Wu, X; Yong, Y; Zhao, K; Zhou, Z | 1 |
Chen, H; Cheng, L; Maboh, RN; Mao, GW; Wang, H; Wu, XY | 1 |
Kulhari, U; Kumar, A; Kundu, S; Mohapatra, P; Mugale, MN; Murty, US; Ram, C; Sahu, BD; Syed, AM | 1 |
Bai, Y; Chen, C; Gao, Z; Jiang, X; Meng, Y; Zhang, X; Zheng, C | 1 |
Subbaiah, KCV; Tang, WHW; Wu, J; Yao, P | 1 |
Chattipakorn, N; Chen, R; Chen, Y; Dai, C; Huang, W; Liang, G; Luo, W; Shen, S; Wang, J; Wang, Z | 1 |
Chen, L; Liang, Q; Liu, M; Qian, L; Xu, H; Yan, J; Yang, G | 1 |
Cheng, G; Li, X; Liao, S; Lu, W; Wu, J; Zhu, H | 1 |
Cai, Z; He, B; Li, Y; Shen, L; Sun, Z; Wang, X; Xiao, Q; Xu, K; Xu, L; Yang, W; Yang, X; Yin, A; Yuan, R; Zhang, W; Zhou, B; Zhuang, F | 1 |
Cooper, STE; Haines, ZHR; Malone, GO; Meijles, DN; Sheppard, MN; Westaby, JD | 1 |
Chang, WT; Chen, CL; Chen, ZC; Chu, JS; Huang, TL; Lin, YW; Liu, PY; Shih, JY | 1 |
Betazza, MC; Cianciulli, TF; Fontana Estevez, FS; Gironacci, M; González, GE; Goren, N; Medina, V; Miksztowicz, V; Morales, C; Penas, F; Selser, C; Seropian, IM; Silva, MG; Touceda, V; Villaverde, A | 1 |
Li, G; Liang, G; Liang, S; Luo, W; Sun, J; Wang, M; Yu, T; Zou, C | 1 |
Ji, M; Li, Y; Liu, Y; Ma, G | 1 |
Ding, Y; Gu, Y; Li, Y; Shang, Z; Zhang, X | 1 |
Liang, G; Luo, W; Shan, P; Wang, M; Wang, Y; Wu, G; Xu, D; Yang, N; Zou, C | 1 |
Lin, S; Ma, H; Ye, P; Yu, WD; Zhang, AK; Zheng, YG | 1 |
Fu, G; Gong, Y; Han, X; Huang, H; Huang, W; Liang, G; Long, X; Luo, W; Wang, Y; Wu, L; Ye, S; Ye, Y; Zhao, X | 1 |
Chang, J; Dong, Z; Fan, C; Jiao, Y; Jin, Q; Li, X; Que, Y; Song, Q; Yang, C; Zhang, Y | 1 |
Du, Z; Hao, Y; Li, W; Liang, Z; Liu, Y; Tao, Y; Wang, J; Yan, X; Yang, Y; Yu, J; Yuan, Y; Zhao, X | 1 |
Ferder, L; García Menéndez, S; Inserra, F; Manucha, W; Mazzei, L; Sanz, RL | 1 |
Du, CX; Huang, CW; Ku, HC; Kuo, YH; Lee, SY | 1 |
Abeßer, M; Baba, HA; Denton, CP; Krebes, L; Kuhn, M; Michel, K; Möllmann, D; Potapenko, T; Prentki Santos, E; Schlattjan, M; Schmidt, H; Schrader, H; Schuh, K; Skryabin, BV; Špiranec Spes, K; Völker, K; Werner, F | 1 |
Adamson, A; Ahmed, FZ; Binder, P; Butterworth, S; Cartwright, EJ; Fitzgerald, EM; Guan, K; Hille, SS; Liu, W; Luo, X; Müller, OJ; Nguyen, BY; Wang, X; Zhang, H; Zhou, F; Zi, M | 1 |
Cai, L; Chen, S; Chen, X; Ding, Y; Li, J; Li, X; Li, Y; Liu, S; Lu, X; Wei, Y; Wu, X; Xu, J; Zhou, G | 1 |
Ahmed, AA; Ahmed, AAE; El Morsy, EM; Mohamed, SK; Nofal, S | 1 |
Hua, D; Kong, X; Li, P; Li, Y; Mao, Y; Sheng, Y; Sun, W; Wu, X; Yang, C; Zhao, K | 1 |
Liu, Z; Qiu, X; Wu, X; Yang, H; Ye, W | 1 |
Chen, X; Dai, J; Fang, R; Feng, M; Shen, C; Shu, T; Wang, J; Wang, S; Wu, N | 1 |
Han, X; Liang, G; Luo, W; Tu, Y; Wang, M; Wang, Q; Wang, Y; Xu, J; Yu, T | 1 |
Cai, L; Hui, X; Li, S; Li, X; Liu, J; Liu, X; Shu, S; Wang, F; Xia, H; Yang, Y | 1 |
Chiasson, V; Guleria, RS; Gupta, S; Takano, APC | 1 |
Gugerell, A; Gyöngyösi, M; Lukovic, D; Mester-Tonczar, J; Podesser, B; Spannbauer, A; Traxler, D; Winkler, J; Zlabinger, K | 1 |
Chen, C; Huang, J; Huang, R; Liang, X; Liu, A; Ning, T; Nong, H; Qin, F; Tang, X | 1 |
Gong, X; He, J; Li, Y; Lu, Y; Song, X | 1 |
de Boer, RA; Koonen, DPY; Lindtstedt, EL; Michaëlsson, E; Piek, A; Schouten, EM; Silljé, HHW | 1 |
Dang, Z; Ge, R; Jin, G; Li, Z; Lu, D; Ma, L; Nan, X; Su, S | 1 |
Bai, C; Chen, J; Chen, L; Ge, J; Li, H; Liu, R; Liu, T; Song, L; Sun, Y; Wen, H; Xiao, N; Xu, H; Zhang, Y | 1 |
Ahmed, MS; Attramadal, H; Aukrust, P; Holt, MF; Lien, E; Louwe, MC; Mollnes, TE; Nilsson, PH; Schjalm, C; Shahini, N; Yndestad, A; Øgaard, JDS | 1 |
Alonso, J; Ballester-Servera, C; Cañes, L; Galán, M; Herraiz-Martínez, A; Hove-Madsen, L; Martí-Pàmies, I; Martínez-González, J; Muniesa, P; Nistal, JF; Osada, J; Rodríguez, C | 1 |
Jurado Acosta, A; Moilanen, AM; Ruskoaho, H; Rysä, J; Serpi, R; Szabo, Z | 1 |
Ge, J; Ma, J; Ma, L; Ma, Y; Wu, R; Zou, Y | 1 |
Chen, T; Hu, X; Huang, W; Khan, ZA; Liang, G; Lin, K; Luo, W; Shan, P; Wang, J; Wang, S; Wu, G; Xuan, L; Ye, S | 1 |
Fried, ND; Gardner, JD; Gilpin, NW; Lazartigues, E; Lobell, TD; Morris, TM; Oakes, JM; Pearson, CS; Xu, J; Yue, X | 1 |
Gao, L; Guo, S; Li, Y; Liu, Y; Shen, J; Shi, Q; Xiao, F; Xing, S; Yang, F; Zhang, W; Zhao, L | 1 |
Chen, H; Wang, H; Zhu, J | 1 |
Liu, J; Liu, TL; Liu, XL; Ma, RL; Sun, JJ; Wang, BY; Zhang, MJ | 1 |
Berlin, M; Flockerzi, RMV; Freichel, M; Londoño, JEC; Richter, C; Segin, S; Worley, P | 1 |
Gao, C; Hu, H; Jiang, X; Liang, F; Ma, W; Sun, Q; Zhan, H; Zhang, K; Zhang, X; Zhao, Z | 1 |
Chen, Y; Du, J; Jia, MZ; Liu, Y; Ning, ZP; Qi, YF; Ren, JL; Tang, CS; Yu, YR; Zhang, LS; Zhang, YR | 1 |
Chen, J; Guo, Y; Ji, T; Rao, Y; Xie, P | 1 |
Ding, Y; Fu, X; Liu, F; Lou, Y; Wen, H; Yang, L; Yang, Q; Zhang, J; Zhang, L | 1 |
Chen, DX; Huang, DJ; Huang, HL; Huang, JH; Lin, YB | 1 |
Cao, W; Li, Y; Qian, Y; Wang, J; Zhao, P; Zhu, H | 1 |
Bao, Y; Dai, Y; Jia, K; Jin, Q; Li, X; Liu, A; Lu, L; Wu, L | 1 |
Chen, F; Geng, J; Li, X; Xie, J; Xu, B; Zhao, J | 1 |
Baker, AH; Borthwick, G; Boswell, L; Dweck, MR; Gray, GA; Jansen, MA; Kwiecinski, J; Lennen, RJ; Newby, DE | 1 |
Chen, Z; He, X; Liu, X; Lu, Y; Miao, R; Wang, J | 1 |
Boogerd, CJ; de Boer, RA; Dokter, MM; Lam, CSP; Markousis-Mavrogenis, G; Meems, LMG; Schouten, EM; Silljé, HHW; Voors, AA; Westenbrink, BD; Withaar, C | 1 |
Barbato, E; Bellis, A; Di Gioia, G; Mauro, C; Morisco, C; Sorriento, D; Trimarco, B | 1 |
Du, W; Hu, J; Li, W; Li, Y; Liu, F; Wang, X; Xu, L; Yang, L; Yue, Q; Zhao, R | 1 |
Choy, A; Chung, MK; Khodadadi-Jamayran, A; Lin, X; Narke, D; Offerman, E; Park, DS; Shaheen, D; Shekhar, A; Van Wagoner, DR; Wass, SY; Xiao, J; Yamaguchi, N | 1 |
Li, D; Li, G; Lv, D; Ouyang, J; Peng, L; Shang, F; Wang, R; Yan, J; Yang, J | 1 |
Gao, P; Gao, R; Ge, W; Guo, W; Guo, X; Hou, C; Li, B; Liu, Y; Song, X; Wang, J; Zhang, W; Zhao, H | 1 |
Bullock, M; Campbell, WB; Clifton-Bligh, R; Kasparian, AO; Levick, SP; Lim, G; McCaffrey, SL; Widiapradja, A | 1 |
Cheng, Y; Gu, W; Li, Z; Sun, T; Wang, S | 1 |
Alexis, JD; Ashton, JM; Burke, RM; Dirkx, RA; Lighthouse, JK; Mohan, A; O'Brien, M; Phipps, RP; Quijada, P; Small, EM; Woeller, CF; Wojciechowski, W | 1 |
Boss, GR; Casteel, DE; Cividini, F; Dalton, ND; Dillmann, WH; Gu, Y; Kalyanaraman, H; Peterson, KL; Pilz, RB; Schwaerzer, GK; Zhuang, S | 1 |
Chang, W; Chen, Y; Huang, S; Ke, J; Wang, L; Wang, Q; Zhou, Z | 1 |
Chai, D; Chen, X; Chu, Y; Du, H; Lin, J; Lin, X; Liu, J; Ma, K; Ruan, Q; Xie, H; Xu, C; Zeng, J; Zhang, H; Zhang, Y | 1 |
Brombacher, F; Frieler, RA; Goldstein, DR; Goonewardena, SN; Ma, J; Mortensen, RM; Song, J; Vigil, TM | 1 |
Dou, W; Gramolini, A; Kuzmanov, U; Lai, BFL; Lu, RXZ; Radisic, M; Rafatian, N; Smith, JB; Sun, Y; Wang, EY; Wu, Q; Yazbeck, J; Zhang, XO | 1 |
Du, M; Li, F; Li, Q; Wang, X; Wang, Z; Yang, Y; Zhang, H | 1 |
Chen, XH; Cheng, YW; Gao, PJ; Kong, LR; Lan, BD; Lin, JR; Ruan, CC; Xu, L; Zhang, ZB | 1 |
Hernandez, R; Lu, W; Meng, Z; Zhou, C | 1 |
Du, J; Guo, HC; Lai, YQ; Li, G; Li, Y; Ma, K; Qiao, B; Shao, Y; Zhi, Y | 1 |
De Gregorio, N; Díaz-Araya, G; Espinoza, C; Espitia-Corredor, J; Lavandero, S; Olivares-Silva, F; Osorio, JM; Peiró, C; Sánchez-Ferrer, C; Silva, D; Vivar, R | 1 |
Li, JD; Wu, MP; Xu, X; Yan, C; Zhang, YS; Zhou, Q | 1 |
Chen, W; Chen, X; Huang, F; Khan, A; Li, L; Qiu, Z; Wang, L; Wang, X; Zhang, J | 1 |
Bhindi, R; Birgisdottir, AB; Bubb, KJ; Figtree, GA; Hansen, T; Karimi Galougahi, K; Kok, C; Meyer, C; Rasko, NB; Reisman, SA; Ritchie, R; Tang, O; Ward, K | 1 |
Aguiló, S; de Diego, A; Galán, M; García-Dorado, D; Guadall, A; Martínez-González, J; Navarro, MA; Navas, M; Orriols, M; Rodriguez, C; Rodríguez-Sinovas, A; Varona, S | 1 |
Guo, L; Han, S; He, W; Li, H; Shen, D; Wang, J; Zhang, Y | 1 |
Cai, W; Qiu, L; Sun, H; Zhang, Q; Zhou, Y; Zhou, Z; Zhu, X | 1 |
Hays, TT; Ma, B; Qiu, H; Stoll, S; Zhou, N | 1 |
Bu, J; Gao, J; Huang, C; Huang, G; Shen, W; Sun, M; Wei, T; Wu, J | 1 |
Hu, F; Lu, S; Ma, W; Wang, Y; Wang, Z; Wei, Y; Yan, L; Yan, X; Zeng, Q | 1 |
Chen, X; Cheng, YW; Jin, HY; Oudit, GY; Penninger, JM; Song, B; Wang, W; Xu, YL; Zhang, ZZ; Zhong, JC | 1 |
Gao, L; Guo, S; Li, L; Li, R; Li, Y; Liu, Y; Niu, X; Wang, S; Yan, X; Yang, H; Yao, L; Zhang, Y; Zhao, X | 1 |
Ayme-Dietrich, E; Birling, MC; Bouabout, G; Champy, MF; Fertak, LE; Herault, Y; Jacob, H; Madeira, L; Monassier, L; Mudgett, J; Pavlovic, G; Petit-Demoulière, B; Sorg, T | 1 |
Cooke, JP; Entman, ML; Jo, J; Kaelber, JT; Kim, E; Kim, J; Lai, L; Lee, HK; Nam, D; Reineke, EL; Suh, JH; Taffet, GE | 1 |
Jin, L; Liu, Z; Shu, J; Wang, H | 1 |
Casarini, DE; Jara, ZP; Lima, LS; Michelini, LC; Montezano, AC; Peres, R; Scavone, C; Silva, SD; Touyz, RM | 1 |
Andrés, V; Chèvre, R; Del Campo, L; Esteban, V; Ferrer, M; Fuster, JJ; Molina-Sánchez, P; Redondo, JM; Rius, C | 1 |
Chen, D; Gao, P; Huang, J; Ji, K; Li, X; Xu, T; Yan, C; Yang, Y; Zhu, D; Zuo, C | 1 |
Chen, P; Liu, X; Qiao, D | 1 |
Bartolomucci, A; Beker, DL; Dyck, JRB; Grant, MK; Hamza, SM; Matsumura, N; Parajuli, N; Razzoli, M; Robertson, IM; Soltys, CM; Zordoky, BN | 1 |
Du, J; Hou, CL; Lai, S; Li, HH; Li, WJ; Tian, C; Wang, HX; Yang, H; Zhang, YL | 1 |
Accornero, F; Dorn, LE; Petrosino, JM; Wright, P | 1 |
Abraham, NG; Arad, M; Aravot, D; Cohen, K; Gorfil, D; Hochhauser, E; Kornwoski, R; Laniado-Schwartzman, M; Nudelman, V; Waldman, M; Yadin, D | 1 |
Liu, D; Nie, W; Shi, K; Xie, D; Yang, P; Yu, B; Zhang, H | 1 |
Luo, X; Ma, Q; Wu, Y; Yu, J; Zhang, L; Zhang, Y | 1 |
Dong, WR; Li, ZH; Liu, SM; Lu, F; Yu, H; Zhang, N | 1 |
Bi, HL; Lai, S; Li, HH; Shu, Q; Wang, XM; Yang, XL; Zhang, YL | 1 |
Deng, W; Hu, C; Liao, HH; Tang, QZ; Wang, SS; Wei, WY; Yang, Z; Zhang, N | 1 |
Chen, N; Gao, L; Li, L; Liu, Y; Wang, X; Xiao, L; Yang, L; Zhang, J; Zhao, X | 1 |
Imai, Y; Ito, H; Kadowaki, A; Kuba, K; Sato, T; Suzuki, T; Watanabe, H | 1 |
Bupha-Intr, T; Jitmana, R; Kijtawornrat, A; Raksapharm, S; Saengsirisuwan, V | 1 |
Bastacky, SI; Jackson, EK; Salah, E; Tofovic, SP | 1 |
Cai, L; Chen, Y; Feng, X; Han, C; Jin, L; Li, C; Li, Y; Mu, J; Yan, X; Yao, Q; Zhang, D; Zhao, R | 1 |
Abraham, D; Acar, E; Costantino, S; Gonçalves, IF; Hallström, S; Hamza, O; Kiss, A; Klein, KU; Paneni, F; Podesser, BK; Szabo, PL; Tretter, EV; Trojanek, S | 1 |
Arruda-Junior, DF; Benetti, A; Beraldo, JI; Borges-Júnior, FA; Dariolli, R; Girardi, ACC; Jensen, L; Luchi, WM; Martins, FL; Seguro, AC; Shimizu, MH | 1 |
Andrades, ME; Biolo, A; Caetano, DSL; Clausell, N; Leitão, SAT; Lopes, A; Nascimento, TG; Pinto, GH; Rohde, LEP; Soares, DDS | 1 |
Chan, P; Chen, X; Cheng, Y; Li, Y; Liu, J; Liu, Z; Morrisey, E; Pi, J; Reilly, M; Shen, Y; Tomlinson, B; Wang, H; Yu, Z; Zhang, L; Zhang, Q; Zhang, Y; Zheng, X; Zhuang, T | 1 |
Cao, C; Chang, J; Chen, X; Gao, E; Han, D; Li, J; Shen, D; Tang, J; Wang, B; Xiao, Y; Zhang, J; Zhao, W | 1 |
Hong, L; Lin, C; Lin, L; Liu, GY; Pan, YX; Peng, WW; Wang, SZ; Zhao, XL | 1 |
Benedict, C; Cheng, Z; Cimini, M; de Lucia, C; Garikipati, VNS; Goukassian, DA; Kishore, R; Koch, WJ; Lucchese, AM; Roy, R; Truongcao, MM; Wang, C | 1 |
Ding, J; Han, L; Hao, M; Li, M; Lin, L; Luo, B; Tang, Q; Yu, L; Zhang, L | 1 |
Du, Y; Ge, W; Han, J; Jiang, L; Xu, J; Zhang, H | 1 |
Katsuya, T; Koriyama, H; Kyutoku, M; Miyake, T; Morishita, R; Nakagami, F; Nakagami, H; Osako, MK; Rakugi, H; Shimamura, M | 1 |
Cartledge, JE; Ibrahim, M | 1 |
Libonati, JR | 1 |
Schlüter, KD; Schreckenberg, R | 1 |
Liu, JJ; Lu, Y; Yu, XJ | 1 |
Cheng, XC; Guo, W; Hao, XQ; Li, L; Li, M; Sun, TW; Zhang, JL; Zhang, SY | 1 |
Hirose, M; Ishigami, A; Kobayashi, A; Kubota, I; Misaka, T; Miyata, M; Saitoh, S; Shishido, T; Suzuki, S; Takeishi, Y | 1 |
Chen, XP; Liu, K; Yang, R | 1 |
Chen, HY; Huang, XR; Lan, HY; Li, YQ; Wei, LH; Yan, BP; Yu, CM; Zhang, Y | 1 |
Carretero, OA; Dai, X; González, GE; Leung, P; Liao, TD; Liu, Y; Nakagawa, P; Rhaleb, NE; Yang, XP | 1 |
Chen, HC; Gao, S; Guo, K; Huang, LL; Lan, CZ; Wang, J; Wang, XH; Yu, TT; Zhang, Z | 1 |
Aragon, M; Campen, MJ; Colombo, ES; Davis, J; Lucas, SN; Makvandi, M; Paffett, ML | 1 |
Chang, SK; Guo, LR; Liu, KX; Liu, Q; Sun, CW; Xuan, CL; Yao, FR | 1 |
Balligand, JL; Beauloye, C; Belge, C; Bertrand, L; Dessy, C; Dubois-Deruy, E; Esfahani, H; Götz, KR; Hamelet, J; Hammond, J; Herijgers, P; Hilfiker-Kleiner, D; Iaccarino, G; Jnaoui, K; Langin, D; Lobysheva, I; Manoury, B; Markl, A; Nikolaev, VO; Pouleur, AC; Tavernier, G; Vanderper, A | 1 |
Chen, Y; Fan, GC; Jiang, DS; Jiang, XL; Li, H; Liu, Y; Yang, Q; Zhang, R; Zhang, XD; Zhang, Y | 1 |
Bhat, G; Sayer, G | 1 |
Brouns, AE; Brouwers, O; Daniels, A; Derks, WJ; Janssen, BJ; Munts, C; Schalkwijk, CG; van Bilsen, M; van der Vusse, GJ; van Nieuwenhoven, FA | 1 |
Du, J; Li, Y; Wang, C; Wu, Y; Zhang, C | 1 |
Chen, Y; Liu, C; Liu, H; Meng, W; Sun, Y; Zhao, T; Zhao, W | 1 |
Alghamri, MS; Elased, KM; Grobe, N; Meszaros, JG; Morris, M | 1 |
Chen, G; He, QY; Pan, SF; Pan, SQ; Shen, C; Zhang, XM | 1 |
Bahr, TM; Norris, AW; Peterson, ES; Scholz, TD; Segar, JL; Volk, KA | 1 |
Chen, Y; Iwaya, S; Oikawa, M; Takeishi, Y | 1 |
Alakoski, T; Kerkelä, R; Kivirikko, KI; Lipson, KE; Magga, J; Piuhola, J; Ruskoaho, H; Signore, P; Szabó, Z; Ulvila, J; Vainio, L; Vuolteenaho, O | 1 |
Basu, R; Fan, D; Kandalam, V; Kassiri, Z; Lee, J; Oudit, GY; Patel, V; Takawale, A; Wang, X | 1 |
Ai, D; Hammock, BD; Li, L; Li, N; Pang, W; Zhang, X; Zhu, Y | 1 |
Basu, R; Fan, D; Kassiri, Z; Oudit, GY; Parajuli, N; Patel, VB; Penninger, JM; Ramprasath, T; Wang, W; Wang, Z | 1 |
Cui, W; Du, J; Li, H; Li, Y; Miwa, T; Sato, S; Song, WC; Wang, C; Wu, Y; Zhang, C | 1 |
Basu, R; Davidge, ST; Fan, D; Kassiri, Z; McMurtry, MS; Morton, JS; Oudit, GY; Parajuli, N; Patel, VB; Zhong, JC | 1 |
Cavasin, MA; Chen, B; Demos-Davies, KM; Ferguson, BS; Ferrara, C; Horn, TR; Jeong, MY; Mahaffey, JH; McKinsey, TA; Piroddi, N; Poggesi, C; Scellini, B; Schuetze, KB; Spiltoir, JI; Tesi, C; Williams, SM | 1 |
Chen, CX; Gao, JP; Gao, Y; Guo, J; Wang, HL; Wu, R | 1 |
Dai, Z; He, H; Huang, C; Meng, Y; Tang, Y; Wang, X; Xiao, J; Yu, S; Zhao, Q | 1 |
Cardin, S; Deschepper, CF; Jeidane, S; Picard, S; Praktiknjo, S; Reudelhuber, TL; Scott-Boyer, MP | 1 |
Chai, X; Han, J; Li, C; Qiu, Q; Shi, T; Wang, W; Wang, Y; Wu, Y | 1 |
Du, J; Han, QY; Jiang, X; Li, HH; Liu, Y; Miao, J; Song, L; Tian, C; Wang, AW; Wang, HX; Xia, YL; Yu, L | 1 |
Bajulaiye, A; Libonati, JR; Mann, S; Muthukumaran, G; Sabri, A; Sturgeon, K | 1 |
Bruce, E; Espejo, A; Francis, J; Horowitz, A; Katovich, MJ; Nair, A; Oswalt, A; Raizada, MK; Rathinasabapathy, A; Shenoy, V; Steckelings, UM; Sumners, C; Unger, T | 1 |
Duerrschmid, C; Entman, ML; Haudek, SB; Trial, J; Wang, Y | 1 |
Chi, RF; Hu, XL; Li, B; Qin, FZ; Sun, Y; Tian, J; Xu, TR; Zhang, WF; Zhang, XL; Zhang, YA | 1 |
Chen, C; He, Z; Hoopes, SL; Wang, DW; Wen, Z; Zeldin, DC; Zhang, X | 1 |
Cao, YG; Guo, J; Li, BY; Li, L; Li, SZ; Li, XL; Qi, HP; Shi, MM; Sun, HL; Wang, Y; Xu, W; Zhang, QH | 1 |
Bicer, S; Clark, Y; Devine, RD; Jing, R; McCarthy, DO; Reiser, PJ; Stevens, SC; Velten, M; Wold, LE; Youtz, DJ | 1 |
Du, Q; Jin, T; Lu, P; Sheng, J; Wang, YQ; Yuan, LF | 1 |
Birnbaumer, L; Camacho Londoño, J; Camacho Londoño, JE; Dietrich, A; Flockerzi, V; Freichel, M; Hammer, K; He, T; Kaestner, L; Laufs, U; Lipp, P; Mannebach, S; Mathar, I; Oberhofer, M; Philipp, SE; Reil, JC; Schröder, L; Schweda, F; Tabellion, W; Tian, Q | 1 |
Dai, Z; Huang, C; Huang, H; Tang, Y; Wang, X; Xiao, J; Yu, S; Zhao, Q | 1 |
Ahmad, S; Deal, D; Dell'Italia, LJ; Ferrario, CM; Groban, L; Kon, ND; Nagata, S; Simington, SW; Varagic, J; VonCannon, JL; Wang, H | 1 |
Ainscough, JF; Ball, SG; Drinkhill, MJ; Frentzou, GA; Turner, NA | 1 |
Beltz, TG; Felder, RB; Guo, F; Johnson, AK; Wei, SG; Xue, BJ; Yu, Y; Zhang, ZH | 1 |
Chen, CX; Gao, JP; Gu, WL; Huang, XY | 1 |
Carretero, OA; Janic, B; Peng, H; Peterson, EL; Rhaleb, N; Rhaleb, NE; Sarwar, Z; Xu, J; Yang, XP | 1 |
Bian, ZY; Feng, H; Liao, HH; Ma, ZG; Tang, QZ; Yang, Z; Yuan, Y; Zhang, N | 1 |
Cai, Q; Chen, J; Huang, H; Liu, X; Liu, Y; Wang, J; Zhang, K | 1 |
Hashimoto, T; Ikeda, Y; Imaizumi, A; Komuro, I; Kumagai, H; Morita, H; Motozawa, Y; Nagai, R; Nakao, T; Nakayama, A; Sumida, T; Takahashi, T; Yamaguchi, T | 1 |
Francis, J; Sriramula, S | 1 |
Hasenfuss, G; Jatho, A; Kittana, N; Lutz, S; Nowak, K; Ongherth, A; Pasch, S; Tiburcy, M; Toischer, K; Vettel, C; Weis, CA; Wieland, T; Wuertz, CM; Zimmermann, WH | 1 |
Hinek, A; Li, W; Mao, S; Qa'aty, N; Vincent, M; Zhang, M | 1 |
Bhimaraj, A; Celis, R; Cordero-Reyes, AM; Estep, JD; Flores-Arredondo, JH; Hamilton, DJ; Orrego, CM; Torre-Amione, G; Trevino, AR; Youker, KA | 1 |
Cha, HN; Choi, JH; Heo, JY; Jang, BI; Kwon, WY; Lee, IK; Park, SY | 1 |
Bian, ZY; Deng, W; Guo, H; Ni, J; Tang, QZ; Yuan, Y; Zhou, H | 1 |
Campbell, P; Cho, A; Horton, RE; McCain, ML; Park, SJ; Parker, KK; Pasqualini, FS; Sheehy, SP; Yadid, M | 1 |
Beqqali, A; Bitsch, N; de Windt, LJ; Hermans-Beijnsberger, S; Heymans, S; Nakagawa, S; Peters, T; Prasanth, KV; Schroen, B; van Oort, RJ | 1 |
Ahmad, S; Alencar, A; da Silva, J; Ferrario, CM; Groban, L; Lin, MR; Sun, X; Wang, H; Zapata-Sudo, G | 1 |
Asada, Y; Chosa, E; Funamoto, T; Hao, Y; Hatakeyama, K; Kato, J; Kitamura, K; Kurogi, S; Nakamura, M; Sakamoto, S; Sekimoto, T; Sekita-Hatakeyama, Y; Tsuruda, T; Udagawa, N | 1 |
Arimoto, M; Hata, H; Osaka, S; Sakino, H; Sezai, A; Shiono, M; Yaoita, H | 1 |
Ferrario, CM | 1 |
Chu, ML; Dong, H; Joyce, J; Khan, SA; Sasaki, T; Tsuda, T | 1 |
Bachner-Hinenzon, N; Ben-Zvi, D; Cao, X; Fisch, S; Gertler, A; Kachel, E; Kolodgie, F; Kotev Emeth, S; Lavee, J; Raanani, E; Savion, N; Schäfer, K; Schneiderman, J; Schoen, FJ; Simon, A; Solomon, G; Virmani, R | 1 |
Ding, Z; Ge, J; Gong, H; Jiang, Q; Kang, L; Li, Y; Wang, S; Wang, X; Wu, J; Ye, Y; Yin, P; Yuan, J; Zhang, W; Zou, Y | 1 |
Ahmad, S; Cheng, CP; Collawn, JF; Dell Italia, LJ; Ferrario, CM; Groban, L; Varagic, J; Wang, H | 1 |
Aoyama, M; Bando, YK; Kawase, H; Monji, A; Murohara, T; Nishimura, K | 1 |
Eguchi, S; Elliott, KJ; Forrester, SJ; Kawai, T; Kwok, HF; Nuti, E; Obama, T; Rizzo, V; Rossello, A; Scalia, R; Takayanagi, T; Tsuji, T | 1 |
Ding, H; Ding, S; Gao, L; He, B; Pu, J; Xu, L; Yao, T; Ying, X; Yuan, A; Zhao, Y | 1 |
Chen, HZ; Cui, SS; Liu, DP; Pei, JF; Tang, X; Yan, YF; Zhang, Y; Zhang, ZQ | 1 |
Baldus, S; Eickholt, C; Jungen, C; Klatt, N; Kuklik, P; Lau, D; Meyer, C; Muellerleile, K; Reitmeier, A; Schad, C; Schäffer, B; Scherschel, K; Schwedhelm, E; Steven, D; Wassilew, K; Willems, S; Yamamura, J; Zeller, T | 1 |
Bian, ZY; Deng, W; Jin, YG; Li, H; Shen, DF; Tang, QZ; Wang, SS; Wu, QQ; Yan, L; Yang, Z; Yuan, Y; Zeng, XF; Zhou, H | 1 |
Antonio, EL; Antunes, HK; de Mello, MT; Dos Santos, AA; Giampá, SQ; Koike, MK; Lee, KS; Mônico-Neto, M; Serra, AJ; Souza, HS; Tucci, PJ; Tufik, S | 1 |
Bai, B; Han, J; Huang, W; Liang, G; Mei, L; Pan, Y; Qian, Y; Xu, Z; You, S; Zhang, Y; Zou, C | 1 |
Chen, X; Gao, X; Lu, G; Luo, C; Luo, J; Peng, L; Zuo, Z | 1 |
Huang, H; Kong, B; Li, Q; Liu, Y; Mei, Y; Peng, J; Quan, D; Wang, G; Wang, Z; Xiong, L; Xiong, X; Zhong, P | 1 |
Li, YL; Li, YQ; Qian, ZQ; Wang, YW; Yang, DL | 1 |
Amelio, D; Cerra, MC; David, S; Filice, M; Fucarino, A; Garofalo, F; Imbrogno, S; Jensen, FB | 1 |
Chen, SR; Feng, GS; He, P; Huang, Y; Li, ZM; Liu, M; Liu, PQ; Lou, LL; Wang, PX; Zhu, CG | 1 |
Bond Lau, W; Du, J; Li, P; Li, Y; Li, Z; Ma, XL; Wang, C; Wu, Y; Zhang, C | 1 |
Deng, ZR; Guang, GC; Yan, H; Zhang, Y | 1 |
Egashira, T; Fukuda, K; Hashimoto, H; Hayashi, K; Hayashiji, N; Ito, S; Kashimura, S; Kodaira, M; Kunitomi, A; Kusumoto, D; Lachmann, M; Motoda, C; Nagai, T; Nakanishi, C; Sakata, K; Seki, T; Shimojima, M; Takei, M; Tohyama, S; Yamagishi, M; Yozu, G; Yuasa, S | 1 |
Jugdutt, BI; Konig, A; Liu, P; Moe, G | 1 |
Dandapat, A; Hermonat, PL; Hu, C; Inoue, K; Inoue, N; Jishage, K; Kawase, Y; Marwali, MR; Mehta, JL; Sawamura, T; Sugawara, F; Sun, L; Suzuki, H | 1 |
Cai, L; Hein, DW; Li, X; Marshall, JP; Prabhu, SD; Xiang, X; Zhou, G | 1 |
Ainscough, JF; Ball, SG; Balmforth, AJ; Brooke, DA; Drinkhill, MJ; Sedo, A; Turner, NA | 1 |
Jing, L; Kou, JJ; Li, S; Li, WM; Song, J; Zhou, LJ | 1 |
Dai, Q; Dong, P; Huang, Q; Jia, N; Jin, W; Liu, S; Zhang, J | 1 |
Aranha, AB; Bader, M; Callera, GE; Ferreira, AJ; Mercure, C; Reudelhuber, TL; Santos, RA; Touyz, RM; Walther, T; Yogi, A | 1 |
Cherfa, A; Delcayre, C; Di Zhang, A; Escoubet, B; Jaisser, F; Messaoudi, S; Nguyen Dinh Cat, A; Samuel, JL; Soukaseum, C | 1 |
Chen, S; Chen, Y; Dai, G; He, J; Huang, Y; Li, Z; Meng, R; Tang, L; Wang, L; Wu, Z; Xiao, P; Yao, F; Zhang, C | 1 |
Sun, Y | 1 |
Amann, K; Buness, A; Lutz, D; Maercker, C; Petersen, I; Ridinger, H; Rutenberg, C | 1 |
Baker, KM; Kumar, R; Singh, VP | 2 |
Brook, RD; Chen, LC; Mikolaj, M; Rajagopalan, S; Sun, Q; Wang, A; Xu, X; Ying, Z; Yue, P; Zhong, M | 1 |
Bjurgert, E; Cuthbertson, A; Hofstra, L; Indrevoll, B; Kindberg, GM; Krasieva, TB; Lovhaug, D; Narula, J; Narula, N; Petersen, LB; Petrov, AD; Reutelingsperger, CP; Solbakken, M; Tromberg, BJ; Vannan, MA; Verjans, JW | 1 |
Campanelli, JJ; Christensen, LP; Dedkov, EI; Tomanek, RJ; Weiss, RM; Zhang, RL; Zheng, W | 1 |
Cavallero, S; Gelpi, RJ; Gironacci, MM; González, GE; Krieger, ML; Lopez Verrilli, MA; Morales, C; Palleiro, J; Seropian, IM; Tomasi, VH; Wilensky, L | 1 |
Baertschi, AJ; Isidoro Tavares, N; Lerch, R; Montessuit, C; Philip-Couderc, P | 1 |
Hayashi, T; Jin, D; Kitada, K; Kitaura, Y; Matsumoto, C; Matsumura, Y; Miyamura, M; Miyazaki, M; Mori, T; Ohkita, M; Okada, Y; Takai, S; Ukimura, A; Yamashita, C | 1 |
Huang, BS; Leenen, FH | 1 |
Bergmann, MW; de Windt, L; Dietz, R; Gehrke, C; Noack, C; Renger, A; van der Nagel, R; Zafiriou, MP; Zelarayan, L | 1 |
Jia, T; Pamer, EG | 1 |
Darbar, D; Donahue, BS; Ellinor, PT; Kaiser, DW; Kannankeril, PJ; MacRae, CA; Makino, S; Roden, DM; Wasserman, BS; Watanabe, H | 1 |
Anegawa, T; Hirooka, Y; Ikeda, A; Imaizumi, T; Kai, H; Kajimoto, H; Kato, S; Koga, M; Kudo, H; Mifune, H; Mori, T; Takayama, N; Yasuoka, S | 1 |
Basu, R; Guo, D; Kassiri, Z; Liu, PP; Oudit, GY; Penninger, JM; Scholey, JW; Wang, X; Zhong, J | 1 |
Imaizumi, T; Kai, H; Kajimoto, H; Kudo, H; Takayama, N; Yasuoka, S | 1 |
Ahmad, S; Brosnihan, KB; Chappell, MC; Ferrario, CM; Gallagher, PE; Groban, L; Tallant, EA; Varagic, J | 1 |
Brower, GL; Janicki, JS; Levick, SP; Murray, DB | 1 |
Arranz, C; Dominici, FP; Giani, JF; Mayer, MA; Muñoz, MC; Taira, CA; Toblli, JE; Turyn, D; Veiras, LC | 1 |
Coffman, TM; Danser, AH; Gembardt, F; Heringer-Walther, S; Lassner, D; Le, TH; Schultheiss, HP; Sterner-Kock, A; Stijnen, T; van Esch, JH; Walther, T | 1 |
Dworakowski, R; Lakatta, EG; Shah, AM; Walker, SJ; Wang, M; Zhang, J | 1 |
Aro, J; Isopoussu, E; Leskinen, H; Mustonen, E; Ruskoaho, H; Rysä, J; Säkkinen, H; Tokola, H | 1 |
Ahmad, S; Davidoff, KS; Desjardins, DM; Ewen, EP; Gavras, H; Kielbasa, OM; Mathew, M; McCalmon, SA; Naya, FJ; Ohashi, K; Sato, K; Snyder, CM; Walsh, K | 1 |
Chung, AC; Huang, XR; Lan, HY; Lau, CP; Szalai, AJ; Wong, BC; Wu, EX; Wu, Y; Zhang, R; Zhang, YY | 1 |
Aro, J; Leskinen, H; Luosujärvi, H; Ruskoaho, H; Rysä, J; Skoumal, R; Szokodi, I; Tenhunen, O; Tokola, H | 1 |
Chen, W; Frangogiannis, NG | 1 |
Chung, AC; Deng, C; Huang, XR; Lan, HY; Lau, CP; Tse, HF; Yang, F; Yue, W | 1 |
Anwar, MM; Euler, G; Heger, J; Piper, HM; Schiegnitz, E; von Waldthausen, D | 1 |
Danilo, P; Feinmark, SJ; Lau, DH; Ozgen, N; Rosen, MR; Sherman, W; Shlapakova, IN | 1 |
Haghikia, A; Hilfiker-Kleiner, D; Hoch, M; Stapel, B | 1 |
Chen, BJ; Feng, JX; Gao, YL; Li, ZS; Meng, LQ; Su, XX; Xia, XL | 1 |
Dai, HY; Deng, BP; Dong, B; Gao, F; Jiang, H; Liu, B; Liu, CX; Liu, DS; Liu, YF; Lu, XT; Pan, CM; Qiao, Y; Qu, X; Song, HD; Wang, LC; Yin, HQ; Yu, QT; Zhang, L; Zhang, MX; Zhang, YH; Zhao, YX | 1 |
Cai, WF; Hu, ZW; Lv, XX; Ma, YG; Wang, QQ; Wang, XX; Wang, ZY; Xin, BM; Yan, HM; Yan, J; Yang, HZ; Zhang, XW | 1 |
Dimaio, JM; Gerard, RD; Kinoshita, H; Kuwahara, K; Olson, EN; Richardson, JA; Sadek, H; Small, EM; Sutherland, LB; Thatcher, JE | 1 |
Chen, CX; Gao, JP; Gu, WL; Lü, J; Wang, Y; Wu, Q | 1 |
Chen, CX; Gao, JP; Gu, WL; Li, X; Wu, Q | 1 |
Aihara, K; Akaike, M; Hirata, Y; Ikeda, Y; Ise, T; Ishikawa, K; Iwase, T; Kato, S; Matsumoto, T; Sata, M; Sumitomo-Ueda, Y; Uemoto, R; Yagi, S; Yoshida, S | 1 |
Danser, AH | 1 |
Czabanka, M; Eklund, L; Heljasvaara, R; Ilves, M; Janmey, P; Kerkelä, R; Leskinen, H; Peuhkurinen, K; Pihlajaniemi, T; Piuhola, J; Rasi, K; Ruskoaho, H; Rysä, J; Sormunen, R; Vajkoczy, P; Vuolteenaho, O | 1 |
Aizawa, Y; Gurusamy, N; Kodama, M; Ma, M; Sukumaran, V; Suzuki, K; Thandavarayan, RA; Veeraveedu, PT; Watanabe, K; Yamaguchi, K | 1 |
De Mello, WC | 1 |
Li, J; Tang, YB; Xie, ZZ | 1 |
Ashraf, M; Bernard, LS; Davis, LE; Deng, YB; Hashima, JN; Hohimer, AR; Rasanen, J; Sahn, DJ; Shentu, W; Xiong, L; Zhou, Z | 1 |
Díez, J; González, A; Ravassa, S | 1 |
Bian, ZY; Chen, M; Li, H; Liu, C; Liu, PP; Moon, M; Nghiem, MP; Tang, QZ; Wang, AB; Yan, L; Zhang, Y | 1 |
Chen, CX; Gu, WL; Liu, Y; Lü, J; Wu, Q; Zhang, SJ | 1 |
Domenighetti, AA; Egger, M | 1 |
Chen, CX; Gao, JP; Gu, WL; Lv, J; Wan, Y; Wu, Q | 1 |
Chen, WY; Dai, G; Leng, XY; Li, CL; Sun, XT; Tang, LL; Zeng, WT | 1 |
Carlile-Klusacek, M; Eguchi, K; Eguchi, S; Hinoki, A; Kimura, K; Rizzo, V; Shirai, H; Takaguri, A; Yang, B | 1 |
Imai, Y; Manabe, I; Nagai, R; Nakajima, A; Ohba, Y; Osawa, T; Takaoka, A; Taniguchi, T; Tsushima, K; Yanai, H | 1 |
Han, B; He, Y; Ma, J; Pan, Y; Peng, T; Wang, Y; Wei, M; Xin, P; Zhu, W | 1 |
Acharya, G; Al-Saad, S; Aljabri, MB; Andreasen, TV; Lindal, S; Lund, T; Serrano, MC; Sitras, V; Songstad, NT; Ytrehus, K | 1 |
Basu, R; Bodiga, S; Guo, D; Holland, SM; Kassiri, Z; Liu, GC; Lo, J; Oudit, GY; Penninger, JM; Scholey, JW; Wang, W; Zhong, JC | 1 |
Cai, H; Cao, SP; Gu, N; Qian, CF; Song, YH; Zhao, ZM | 1 |
Chang, MH; Chu, CH; Hu, WS; Huang, CY; Lo, JF; Lu, RB; Tsai, CH; Tsai, FJ; Tzang, BS; Weng, YS | 1 |
Chen, B; Dong, Y; Liu, D; Ma, Y; Xiong, Z; Yang, Y; Zeng, J | 1 |
Booz, GW; Kurdi, M | 1 |
Aro, J; Leskinen, H; Levijoki, J; Manninen, A; Moilanen, AM; Mustonen, E; Ruskoaho, H; Rysä, J; Serpi, R; Tokola, H; Vuolteenaho, O | 1 |
Chen, J; Entman, ML; Lin, SC; Miao, Y; Taffet, GE; Wang, Y; Xu, J | 1 |
Díez, J | 2 |
Carretero, OA; D'Ambrosio, M; González, GE; Harding, P; Leung, P; Nakagawa, P; Peng, H; Peterson, EL; Rhaleb, NE; Xu, J; Yang, XP | 1 |
Essick, EE; Ghobrial, J; Ohashi, K; Ouchi, N; Pimentel, DR; Sam, F; Shibata, R; Wilson, RM | 1 |
Chen, CX; Huang, XY; Li, YM; Liu, Y; Wu, XM; Zhang, XM | 1 |
Ashraf, M; Bernard, LS; Davis, LE; Hashima, JN; Hohimer, AR; Rasanen, J; Sahn, DJ; Vuolteenaho, O | 1 |
Chu, ML; Dong, H; Gao, E; Gao, F; Joyce, J; Koch, W; Liu, Y; Ma, X; Markova, D; Miller, T; Tsuda, T; Wu, J; Zhang, H; Zou, Y | 1 |
Ann Tallant, E; Gallagher, PE; McCollum, LT | 1 |
Calò, LA; Davis, PA; Pessina, AC | 1 |
Du, J; Jia, L; Li, Y; Xiao, C | 1 |
An, L; Guo, X; He, L; Jia, J; Wu, J; Zhao, X; Zhu, H; Zou, Y | 1 |
Glascock, JJ; Habibi, J; Lorson, CL; Ma, L; Shababi, M; Sowers, JR | 1 |
Escoubet, B; Farman, N; Griol-Charhbili, V; Jaisser, F; Messaoudi, S; Sadoshima, J; Zhang, AD | 1 |
Galatioto, J; Kamran, H; Lazar, JM; Liu, F; Mascareno, E; Pedrazzini, T; Rozenberg, I; Salciccioli, L; Siddiqui, MA | 1 |
Chagas, C; Groban, L; Jessup, JA; Lin, MS; Lindsey, SH; Wang, H | 1 |
Araujo, AS; Barreto-Chaves, ML; Belló-Klein, A; Diniz, GP; Fernandes, RO; Ludke, AR; Ribeiro, MF; Schenkel, PC; Tavares, AM | 1 |
Lerch, R; Montessuit, C; Papageorgiou, I; Pedrazzini, T; Pellieux, C | 1 |
Backs, J; Dierck, F; Frank, D; Frey, N; Katus, HA; Krebs, J; Kuhn, C; Lehmann, LH; Oehl, U; Will, R | 1 |
Becher, PM; Lindner, D; Miteva, K; Savvatis, K; Schmack, B; Schultheiss, HP; Tschöpe, C; Van Linthout, S; Westermann, D; Zietsch, C | 1 |
Brittian, KR; Cai, L; Chen, Q; Li, X; McClain, CJ; Prabhu, SD; Tan, Y; Yin, X; Zhou, Z | 1 |
Eghbali, M; Iorga, A; Matori, H; Nadadur, RD; Partow-Navid, R; Umar, S; Wong, G | 1 |
Du, J; Jia, LX; Li, HH; Tian, C; Yang, K; Zhang, TP | 1 |
Ahmad, S; Bradley, WE; Chen, Y; Dell'Italia, LJ; Ferrario, CM; Powell, LC; Powell, PC; Shi, K; Wei, CC; Zheng, J | 1 |
Alenina, N; Bader, M; Campagnole-Santos, MJ; Guimarães, GG; Martins, AS; Motta, DF; Oliveira, ML; Pimenta-Velloso, EP; Santos, RA; Santos, SH | 1 |
da Costa Rebelo, RM; Schlüter, KD; Schreckenberg, R | 1 |
Alghamri, MS; Anstadt, MP; Elased, KM; Gurley, SB; Morris, M; Weir, NM | 1 |
Chen, C; Chen, Q; Li, ZG; Liang, Z | 1 |
Aiello, EA; De Giusti, VC | 1 |
Becher, PM; Fröhlich, M; Hoffmann, S; Lindner, D; Savvatis, K; Schultheiss, HP; Tschöpe, C; Westermann, D; Xia, Y | 1 |
Ge, J; Guo, J; Jiang, G; Li, L; Wang, S; Wu, J; You, J; Zou, Y | 1 |
Chen, CX; Huang, XY | 1 |
Castoldi, G; Catalucci, D; Gupta, S; Hong, N; Jayasinghe, S; Jones, WK; Kim, IK; Kumar, S; Wei, C | 1 |
Fujita, S; Hiroe, M; Hosotani, N; Imanaka-Yoshida, K; Ishizaka, N; Kitaura, Y; Kohda, Y; Nishioka, T; Otsuka, K; Shimojo, N; Tanaka, T; Terasaki, F; Yoshida, T | 1 |
Amin, R; Kariharan, T; Nanayakkara, G; Quindry, J; Viswaprakash, N; Zhong, J | 1 |
Idikio, H; Jugdutt, BI; Jugdutt, C; Menon, V; Palaniyappan, A; Uwiera, RR | 1 |
Devereux, RB; Dige-Petersen, H; Frandsen, E; Hermann, KL; Ibsen, H; Olsen, MH; Rokkedal, J; Wachtell, K | 1 |
Adachi, Y; Fukamizu, A; Garbers, DL; Harada, M; Izumi, T; Kawakami, R; Kishimoto, I; Kuwahara, K; Li, Y; Nakagawa, Y; Nakanishi, M; Nakao, K; Saito, Y; Takahashi, N; Tanimoto, K | 1 |
Aartsen, WM; Daemen, MJ; Danser, AH; Schuijt, MP; Smits, JF | 1 |
Frohlich, ED; Varagic, J | 1 |
Bader, M | 1 |
Iwao, H; Izumi, Y; Kim, S; Nakamura, Y; Omura, T; Takeuchi, K; Yoshida, K; Yoshikawa, J; Yoshiyama, M | 1 |
Castillo, R; Deng, L; El-Adawi, H; El-Sherif, N; Ganguly, K; Mascareno, E; Smith, S; Tramontano, A | 1 |
He, BX; Liang, XQ; Yu, GL | 1 |
Force, T; Haq, S; Kilter, H; Michael, A | 1 |
Matsuzaki, M; Nakamura, H; Takata, S; Umemoto, S | 1 |
Chen, L; Chen, X; Cui, Z; Liu, L; Wang, M | 1 |
Bradley, WE; Dell'Italia, LJ; Lucchesi, PA; Powell, PC; Tallaj, J; Wei, CC | 1 |
Liu, P; Matsuzaki, M; Moe, G; Naik, G; Nakamura, H; Takata, S; Umemoto, S | 1 |
Bond, R; Brinsa, TA; Dell'Italia, L; Diwan, A; Evans, K; Flesch, M; Höper, A; Mann, DL; Peshock, R; Sivasubramanian, N; Spinale, FG; Wei, CC | 1 |
Díez, J; Fortuño, MA; González, A; López, B; López, N; Querejeta, R; Ravassa, S | 1 |
Egashira, K; Hayashidani, S; Ikeuchi, M; Matsusaka, H; Shiomi, T; Suematsu, N; Takeshita, A; Tsutsui, H; Wen, J | 1 |
Ichijo, H; Iwao, H; Izumi, Y; Izumiya, Y; Kim, S; Matsuzawa, A; Yoshida, K; Yoshiyama, M | 1 |
Delbridge, LM; Domenighetti, AA; Huggins, CE; Pedrazzini, T; Pepe, S | 1 |
Cohn, JN; Franciosa, JA; Loscalzo, J | 1 |
Lu, N; Wang, MJ; Wang, YX; Yao, T; Zhu, YC; Zhu, YZ | 1 |
Doi, M; Kobayashi, S; Kohno, M; Matsuzaki, M; Oda, T; Ohkusa, T; Okuda, S; Tokuhisa, T; Yamamoto, T; Yano, M | 1 |
Imaizumi, T; Kai, H; Kuwahara, F; Tokuda, K | 1 |
Harada, M; Kitaura, Y; Komuro, I; Masaya, M; Minamino, T; Nagai, T; Sugaya, T; Terasaki, F; Toko, H; Zou, Y | 1 |
Ebihara, A; Hirata, Y; Iimuro, S; Iwata, H; Kangawa, K; Nagai, R; Niu, P; Shindo, T; Suematsu, Y; Takeda, N; Zhang, Y | 1 |
Averill, DB; Brosnihan, KB; Ferrario, CM; Gallagher, PE; Ishiyama, Y; Tallant, EA | 1 |
Ganten, D; Huang, BS; Leenen, FH; Wang, H | 1 |
Booz, GW | 1 |
Akino, M; Denhardt, D; Jia, N; Kitabatake, A; Kon, S; Liu, L; Matsui, Y; Morimoto, J; Okamoto, H; Onozuka, H; Rittling, SR; Uede, T | 1 |
Akiyama-Uchida, Y; Ashizawa, N; Imanishi, R; Kawano, H; Kuroda, H; Nakashima, M; Ohtsuru, A; Saenko, VA; Seto, S; Yamashita, S; Yano, K | 1 |
Lei, Y; Lu, ZZ; Ma, L; Wang, SW; Xue, Q; Yang, DY | 1 |
Gallagher, G; Huang, Y; Hunyor, SN; Ikeda, Y; Jiang, L; Kawaguchi, O; Shirota, K; Yuasa, T; Zeng, B; Zheng, X | 1 |
Nattel, S | 1 |
Goette, A; Lendeckel, U | 1 |
Cardin, S; Hanna, N; Leung, TK; Nattel, S | 1 |
Egashira, K; Hiasa, K; Ishibashi, M; Takeshita, A; Tan, C; Zhao, Q | 1 |
Touyz, RM | 1 |
Rosenkranz, S | 1 |
Opie, LH | 1 |
Ogawa, H; Yoshimura, M | 1 |
Eto, T; Kato, J; Tsuruda, T | 1 |
Hattori, Y; Matsuda, N | 1 |
Hasegawa, H; Komuro, I | 1 |
Black, MJ; Jones, ES; Widdop, RE | 1 |
Asada, Y; Cao, YN; Eto, T; Hatakeyama, K; Imamura, T; Kato, J; Kitamura, K; Masuyama, H; Tsuruda, T | 1 |
Tsutsui, H | 1 |
du Toit, EF; Lochner, A; Nabben, M | 1 |
Matsuda, H; Matsumoto, K; Mizuno, S; Nakamura, T; Sawa, Y | 1 |
Berr, SS; Bishop, SP; Bove, CM; Dimaria, JM; Epstein, FH; French, BA; Gilson, WD; Kramer, CM; Scott, CD; Yang, Z | 1 |
Kawamura, N; Kawano, S; Kubota, T; Monden, Y; Sunagawa, K; Takeshita, A; Tsutsui, H | 1 |
Hein, L | 1 |
Yang, YJ; Zhang, X; Zhou, XW; Zhu, WL; Zhu, ZM | 1 |
Biagini, G; Blaschke, F; Fleck, E; Graf, K; Leitges, M; Lindschau, C; Margeta, C; Spencer-Hänsch, C; Stawowy, P | 1 |
Aihara, K; Akaike, M; Azuma, H; Fujimura, M; Hashizume, S; Ikeda, Y; Izawa, Y; Kato, M; Kato, S; Kawano, H; Matsumoto, T; Sato, T; Suzaki, Y; Tamaki, T; Yagi, S; Yoshizumi, M | 1 |
Delbridge, LM; Domenighetti, AA; Egger, M; Pedrazzini, T; Richards, SM; Wang, Q | 1 |
Deschamps, AM; Spinale, FG | 1 |
Jaimes, EA; Raij, L; Zhou, MS | 1 |
Doane, KJ; Folkesson, HG; Horne, WI; Maron, MB; Mase, SE; Meszaros, JG; Naugle, JE; Olson, ER; Pilati, CF; Zhang, X | 1 |
Bailey, M; Denver, R; Krum, H; Martin, J | 1 |
Borys, M; Gdowski, T; Kacprzak, P; Maczewski, M; Wojciechowski, D | 1 |
Bai, YJ; Gao, GD; Han, FC; Su, XL; Wang, XF; Wang, Y; Wang, YW; Yang, YB; Zhou, J | 1 |
Achard, JM; Faure, S; Fournier, A; Magy, L; Messerli, FH; Vincent, F; Wang, JG | 1 |
Das, DK; Das, S; Engelman, RM; Maulik, N | 1 |
Ahokas, RA; Sun, Y; Weber, KT; Zhao, W | 1 |
Aoki, R; Fukuyama, T; Orito, K; Shimizu, M; Tanaka, R; Yamane, Y | 1 |
Date, T; Kawai, M; Mochizuki, S; Seki, S; Shimizu, M; Taniguchi, I; Taniguchi, M; Yoshida, S | 1 |
Baklanova, NA; Belenkov, IuN; Mareev, VIu; Masenko, VP; Nasonova, SN; Orlova, IaA; Skvortsov, AA; Sychev, AV | 1 |
Geng, DF; Jin, DM; Wang, JF; Wu, W; Wu, YM | 1 |
Kim-Mitsuyama, S | 1 |
Horiuchi, M; Iwai, M | 1 |
Hatano, M; Kinugawa, K; Kohmoto, O; Nagai, R; Takahashi, T; Usui, S; Yao, A | 1 |
Iwanaga, Y; Kihara, Y; Kita, T; Onozawa, Y; Takenaka, H; Toyokuni, S | 1 |
Lim, H; Zhu, YZ | 1 |
Cohn, JN | 1 |
Bolton, TA; Grobe, JL; Katovich, MJ; Lingis, M; Machado, JM; Mecca, AP; Raizada, MK; Shenoy, V; Speth, RC | 1 |
Fujii, S; Itoh, H; Kawamura, M; Makino, H; Miyamoto, Y; Mogami, H; Sagawa, N; Suga, S; Yoshimasa, Y; Yura, S | 1 |
Fukui, D; Imaizumi, T; Kai, H; Kudo, H; Kuwahara, F; Mori, T; Sugi, Y; Tahara, N; Takayama, N; Takemiya, K; Tokuda, K; Yasukawa, H | 1 |
Griffin, AJ; Gupta, M; Kumbar, DH; Muangmingsuk, S; Ocampo, C; VanBergen, A | 1 |
Dilsizian, V; Eckelman, WC; Narula, J; Narula, N; Shirani, J | 1 |
de Resende, MM; Mill, JG | 1 |
Chen, S; Huang, H; Li, R; Liu, P; Tang, F; Wang, P; Zhang, H | 1 |
Agata, J; Hyakkoku, M; Sasaki, H; Shimamoto, K; Shinshi, Y; Taniguchi, S; Ura, N; Yoshida, H | 1 |
Dong, N; Fa, X; Hou, J; Zhang, R | 1 |
Butler, C; Jugdutt, BI | 1 |
Baurand, A; Bergmann, MW; Betney, R; Birchmeier, W; Busjahn, A; Dietz, R; Dunger, S; Gehrke, C; Huelsken, J; Noack, C; Taketo, MM; Zelarayan, L | 1 |
Dechend, R; Dietz, R; Fiebeler, A; Fischer, R; Gapelyuk, A; Gratze, P; Gruner, A; Gruner, K; Luft, FC; Muller, DN; Qadri, F; Schirdewan, A; Shagdarsuren, E; Wellner, M | 1 |
Assad-Kottner, C; Jahanyar, J; Koerner, MM; Loebe, M; Noon, GP; Torre-Amione, G; Youker, KA | 1 |
Li, HL; Li, TB; Liu, DP; She, ZG; Wang, AB; Wang, YG; Wei, YS; Yang, Q | 1 |
Cooper, SA; Ferrario, C; Govindarajan, G; Habibi, J; Hayden, MR; Karuparthi, PR; Link, D; Ma, L; Qazi, M; Sowers, JR; Stump, C; Wei, Y; Whaley-Connell, A | 1 |
Azuma, J; Dosaka, N; Iekushi, K; Katsuragi, N; Koibuchi, N; Morishita, R; Nagao, K; Ogihara, T; Sanada, F; Taniyama, Y | 1 |
Baba, HA; Bubikat, A; Gassner, B; Kilić, A; Kuhn, M | 1 |
Okura, T | 1 |
Ao, Z; Bao, W; Behm, DJ; Bentley, R; Coatney, RW; Doe, CP; Douglas, SA; Johns, DG; Mirabile, RC; Nerurkar, SS; Ohlstein, JF; Willette, RN; Woods, TN; Yue, TL | 1 |
Carretero, OA; Cavasin, MA; Lin, CX; Reudelhuber, TL; Shesely, EG; Xu, J; Yang, JJ; Yang, XP | 1 |
Cui, W; Li, M; Lu, XY; Wang, SR; Wang, ZT; Zhao, MJ; Zhu, LQ | 1 |
Jalil, JE; Lavandero, S; Ocaranza, MP; Rivera, P | 1 |
Anéas, I; Carmo, EC; Frimm, C; Hashimoto, NY; Krieger, JE; Negrão, CE; Oliveira, EM; Rocha, FL; Roque, FR; Rossoni, LV | 1 |
He, W; Liu, JX; Xiong, XQ; Zhou, L; Zhou, Q | 1 |
Aihara, K; Akaike, M; Azuma, H; Ikeda, Y; Ise, T; Ishikawa, K; Iwase, T; Matsumoto, T; Sumitomo, Y; Yagi, S; Yoshida, S | 1 |
Chen, CX; Guo, J | 1 |
Chiang, FT; Hsieh, CS; Hsu, KL; Hwang, JJ; Kuo, KT; Lai, LP; Lin, JL; Tsai, CT; Tseng, CD; Tseng, YZ | 1 |
Akino, M; Matsui, Y; Okamoto, H; Onozuka, H; Tsutsui, H; Xu, Z | 1 |
Baud, L; Bellocq, A; de Castro Keller, A; Haymann, JP; Letavernier, E; Mesnard, L; Perez, J | 1 |
Backx, PH; Crackower, MA; Dawood, F; Kassiri, Z; Liu, PP; Liu, QC; Oudit, GY; Penninger, JM; Scholey, JW; Zhou, J | 1 |
Boomsma, F; de Beer, VJ; Dekkers, DH; Duncker, DJ; Lamers, JM; Merkus, D; Pijnappels, DA; Sorop, O | 1 |
Lin, CS; Pan, CH | 1 |
Adrahtas, A; Cantwell, DM; Kompa, AR; Krum, H; Lewis, DA; See, F; Wang, BH | 1 |
Chien, KR; Clark, RG; Hongo, M; Mao, L; McKirnan, MD; Ross, J; Sentianin, EM; Tanaka, N; Won, W | 1 |
Sun, Y; Weber, KT | 1 |
Sasayama, S | 1 |
Eichhorn, EJ | 1 |
Yamazaki, T; Yazaki, Y | 1 |
Cazaubon, C; Domergue, V; Fornes, P; Giudicelli, JF; Nisato, D; Richer, C | 1 |
Fogo, A; Ichikawa, I; Inagami, T; Katori, H; Matsusaka, T | 1 |
Komuro, I; Kudoh, S | 1 |
Ashizawa, N; Graf, K; Hsueh, WA; Nunohiro, T; Yano, K | 1 |
Hata, T; Makino, N; Ohtsuka, S; Sawada, S; Sugano, M | 1 |
Linz, W; Malinski, T; Schölkens, BA; Wiemer, G; Wohlfart, P | 1 |
MacKenna, D; Summerour, SR; Villarreal, FJ | 1 |
Higaki, J; Matsumoto, K; Moriguchi, A; Morishita, R; Nakagami, H; Nakamura, T; Ogihara, T; Sakonjo, H; Taniyama, Y | 1 |
Gerdes, AM; Harris, J; Lu, W; Said, S; Tamura, T | 1 |
Fukuma, T; Hasegawa, T; Miki, T; Miura, T; Nakano, A; Shimamoto, K; Tsuchida, A | 1 |
Bulagannawar, M; Carretero, OA; Cavasin, MA; Karumanchi, R; Liu, YH; Mehta, D; Yang, XP | 1 |
Hara, K; Kobayashi, N; Matsuoka, H; Mori, Y; Nakano, S; Tsubokou, Y | 1 |
Adams, MA; Hale, TM; Heaton, JP; Okabe, H | 1 |
Aumont, MC; Juliard, JM | 1 |
Asai, S; Fujii, M; Hayashi, M; Kinoshita, M; Kuwahara, K; Mabuchi, N; Maeda, K; Matsumoto, T; Nakao, K; Ohnishi, M; Saito, Y; Tanaka, H; Tsuji, T; Tsutamoto, T; Tsutsui, T; Wada, A; Wang, X; Yamamoto, T | 1 |
Ajani, U; Arnold, M; Glynn, R; Greaves, S; Hall, C; Harel, F; Hennekens, C; Pfeffer, M; Rouleau, JL; Sirois, P; Solomon, S; White, M | 1 |
Inagami, T; Senbonmatsu, T | 1 |
Hasegawa, T; Kuno, A; Miki, T; Miura, T; Nishino, Y; Shimamoto, K; Tsuchida, A | 1 |
Díez, J; Fortuño, A; Fortuño, MA; Ravassa, S; Zalba, G | 1 |
Andersen, UB; Dige-Petersen, H; Ibsen, H; Rokkedal, J; Steensgaard-Hansen, F | 1 |
Bouzegrhane, F; Thibault, G | 1 |
Agabiti-Rosei, E; Cotecchia, S; Frati, G; Fratta, L; Guelfi, D; Lembo, G; Mulvany, MJ; Notte, A; Porteri, E; Poulet, R; Rizzoni, D; Trimarco, B; Trimarco, V; Vecchione, C | 1 |
Dell'Italia, LJ; Dillon, SR; Hankes, GH; Mukherjee, R; Perry, GJ; Rynders, P; Spinale, FG; Wei, CC | 1 |
Honda, T; Kobayashi, N; Kobayashi, T; Matsuoka, H; Mita, S; Nakano, S; Tsubokou, Y | 1 |
Trochu, JN | 1 |
Aizawa, K; Fukushima, Y; Hirata, Y; Imai, Y; Ishikawa, T; Kadowaki, T; Kagechika, H; Kawai-Kowase, K; Kawakami, H; Komukai, M; Kurabayashi, M; Maemura, K; Manabe, I; Miyamoto, S; Morita, H; Moriyama, N; Nagai, R; Nishimatsu, H; Sata, M; Shindo, T; Suzuki, T; Tobe, K | 1 |
49 review(s) available for angiotensin ii and Cardiac Remodeling, Ventricular
Article | Year |
---|---|
Metabolic Syndrome and Cardiac Remodeling Due to Mitochondrial Oxidative Stress Involving Gliflozins and Sirtuins.
Topics: Angiotensin II; Cardiovascular Diseases; Diabetes Mellitus; Fibrosis; Humans; Hypertension; Metabolic Syndrome; Oxidative Stress; Sirtuins; Sodium-Glucose Transporter 2 Inhibitors; Ventricular Remodeling | 2023 |
The Rationale of Neprilysin Inhibition in Prevention of Myocardial Ischemia-Reperfusion Injury during ST-Elevation Myocardial Infarction.
Topics: Adrenomedullin; Aminobutyrates; Angiotensin II; Animals; Apelin; Atrial Natriuretic Factor; Biphenyl Compounds; Bradykinin; Cardiotonic Agents; Drug Combinations; Gene Expression Regulation; Humans; Mice; Myocardial Reperfusion Injury; Neprilysin; ST Elevation Myocardial Infarction; Substance P; Survival Analysis; Tetrazoles; Valsartan; Ventricular Remodeling | 2020 |
[Research progress of molecular mechanisms on cardiac remodeling].
Topics: Angiotensin II; Atrial Remodeling; Humans; Phosphatidylinositol 3-Kinases; Signal Transduction; Somatomedins; Transforming Growth Factor beta; Ventricular Remodeling | 2013 |
The renin-angiotensin-aldosterone system and heart failure.
Topics: Aldosterone; Angiotensin II; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Chronic Disease; Clinical Trials as Topic; Drug Therapy, Combination; Heart Failure; Humans; Mineralocorticoid Receptor Antagonists; Renin; Renin-Angiotensin System; Treatment Outcome; Ventricular Remodeling | 2014 |
Cardiac remodelling and RAS inhibition.
Topics: Angiotensin II; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Humans; Renin-Angiotensin System; Ventricular Remodeling | 2016 |
Intracrine angiotensin II functions originate from noncanonical pathways in the human heart.
Topics: Angiotensin II; Angiotensinogen; Animals; Chymases; Heart; Humans; Myocardium; Peptide Fragments; Renin-Angiotensin System; Vascular Remodeling; Ventricular Remodeling | 2016 |
Myocardial repair/remodelling following infarction: roles of local factors.
Topics: Angiotensin II; Animals; Cell Death; Fibrosis; Heart Failure; Humans; Inflammation; Myocardial Infarction; Myocardium; Oxidative Stress; Prognosis; Reactive Oxygen Species; Signal Transduction; Ventricular Remodeling | 2009 |
The intracellular renin-angiotensin system in the heart.
Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Glucose; Clinical Trials as Topic; Diabetes Mellitus; Fibroblasts; Humans; Hypertension; Kidney; Muscle, Smooth, Vascular; Myocytes, Cardiac; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Ventricular Remodeling | 2009 |
The brain renin-angiotensin-aldosterone system: a major mechanism for sympathetic hyperactivity and left ventricular remodeling and dysfunction after myocardial infarction.
Topics: Angiotensin II; Brain; Heart Failure; Humans; Myocardial Infarction; Renin-Angiotensin System; Sympathetic Nervous System; Ventricular Dysfunction, Left; Ventricular Remodeling | 2009 |
Large blood pressure variability and hypertensive cardiac remodeling--role of cardiac inflammation.
Topics: Angiotensin II; Animals; Blood Pressure; Disease Models, Animal; Fibrosis; Humans; Hypertension; Macrophages; Myocarditis; Myocardium; Rats; Rats, Inbred SHR; Receptor, Angiotensin, Type 1; Sympathectomy; Time Factors; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Remodeling | 2009 |
The role of inflammatory and fibrogenic pathways in heart failure associated with aging.
Topics: Age Factors; Aged; Aged, 80 and over; Aging; Angiotensin II; Fibroblasts; Fibrosis; Heart Failure, Diastolic; Humans; Inflammation; Muscle Cells; Phagocytes; Reactive Oxygen Species; Risk Factors; Transforming Growth Factor beta; United States; Ventricular Remodeling | 2010 |
STAT3 and cardiac remodeling.
Topics: Aging; Angiotensin II; Cardiomyopathy, Dilated; Extracellular Matrix; Humans; Inflammation; Mitochondria; Myocardium; Myocytes, Cardiac; Signal Transduction; STAT3 Transcription Factor; Ventricular Remodeling | 2011 |
Novel aspects of angiotensin II action in the heart. Implications to myocardial ischemia and heart failure.
Topics: Angiotensin II; Animals; Cell Size; Heart; Heart Failure; Humans; Mechanoreceptors; Myocardial Ischemia; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Ventricular Remodeling | 2011 |
Adaptive and maladaptive remodeling of cardiomyocyte excitation-contraction coupling by angiotensin II.
Topics: Adaptation, Physiological; Angiotensin II; Animals; Cardiomegaly; Excitation Contraction Coupling; Heart Failure; Humans; Mice; Mice, Knockout; Myocytes, Cardiac; Renin-Angiotensin System; Ventricular Remodeling | 2010 |
Angiotensin II induces inflammation leading to cardiac remodeling.
Topics: Angiotensin II; Animals; Chemokines; Cytokines; Humans; Inflammation; Models, Cardiovascular; Myofibroblasts; Renin-Angiotensin System; Signal Transduction; Ventricular Remodeling | 2012 |
Regulation of the cardiac sodium/bicarbonate cotransporter by angiotensin II: potential Contribution to structural, ionic and electrophysiological myocardial remodelling.
Topics: Angiotensin II; Calcium; Cardiomegaly; Electrophysiological Phenomena; Heart; Heart Diseases; Humans; Sodium; Sodium-Bicarbonate Symporters; Ventricular Remodeling | 2013 |
Local cardiac renin-angiotensin system: hypertension and cardiac failure.
Topics: Aldosterone; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Animals, Genetically Modified; Antihypertensive Agents; Heart; Heart Failure; Hemodynamics; Humans; Hypertension; Hypertrophy, Left Ventricular; Myocardium; Organ Specificity; Rats; Rats, Inbred SHR; Renin-Angiotensin System; Vascular Resistance; Ventricular Remodeling | 2002 |
Role of the local renin-angiotensin system in cardiac damage: a minireview focussing on transgenic animal models.
Topics: Angiotensin II; Animals; Animals, Genetically Modified; Cardiomegaly; Fibrosis; Heart; Hypertension; Mice; Mice, Knockout; Mice, Transgenic; Models, Biological; Myocardial Infarction; Myocardium; Organ Specificity; Peptidyl-Dipeptidase A; Rats; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, Angiotensin; Renin-Angiotensin System; Stress, Mechanical; Ventricular Remodeling | 2002 |
Stretch-activated pathways and left ventricular remodeling.
Topics: Angiotensin II; Animals; Endothelin-1; GTP-Binding Proteins; Heart Failure; Humans; Insulin-Like Growth Factor I; Integrins; Interleukin-6; Myocardial Contraction; Myocytes, Cardiac; Signal Transduction; Ventricular Remodeling | 2002 |
Cardiomyocyte apoptosis in hypertensive cardiomyopathy.
Topics: Angiotensin II; Animals; Antihypertensive Agents; Antioxidants; Apoptosis; Arrhythmias, Cardiac; Humans; Hypertension; MAP Kinase Signaling System; Models, Animal; Myocardial Ischemia; Myocytes, Cardiac; Oxidative Stress; Ventricular Remodeling | 2003 |
Role of angiotensin AT1 and AT2 receptors in cardiac hypertrophy and cardiac remodelling.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Gene Expression; Humans; Hypertrophy, Left Ventricular; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Ventricular Remodeling | 2003 |
Reactive oxygen species and angiotensin II signaling in vascular cells -- implications in cardiovascular disease.
Topics: Angiotensin II; Cardiovascular Diseases; Humans; Muscle, Smooth, Vascular; Oxidative Stress; Reactive Oxygen Species; Signal Transduction; Ventricular Remodeling | 2004 |
TGF-beta1 and angiotensin networking in cardiac remodeling.
Topics: Angiotensin II; Animals; Cardiomyopathy, Dilated; Humans; Renin-Angiotensin System; Signal Transduction; Transforming Growth Factor beta; Ventricular Remodeling | 2004 |
[Natriuretic peptides in patients with ischemic heart disease].
Topics: Angina, Unstable; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Atrial Natriuretic Factor; Biomarkers; Cytokines; Humans; Inflammation Mediators; Myocardial Infarction; Natriuretic Peptide, Brain; Ventricular Remodeling | 2004 |
[Effect of adrenomedullin on cardiac myocytes and fibroblasts].
Topics: Adrenomedullin; Angiotensin II; Animals; Apoptosis; Calcium; Cardiomegaly; Cell Division; Cyclic AMP; Endothelin-1; Heart Failure; Humans; Myoblasts, Cardiac; Myocardial Contraction; Myocytes, Cardiac; Nitric Oxide; Peptides; Protein Kinase C; Signal Transduction; Tumor Necrosis Factor-alpha; Ventricular Remodeling | 2004 |
[Mitogenic action of endothelin on fibroblasts].
Topics: Angiotensin II; Animals; Cell Division; Collagen; Endothelin-1; Extracellular Matrix; Fibroblast Growth Factor 2; Fibroblasts; Glomerulosclerosis, Focal Segmental; Humans; Hypertension; Liver Cirrhosis; Myoblasts, Cardiac; Myocardial Infarction; Pulmonary Fibrosis; Receptors, Endothelin; Transforming Growth Factor beta; Ventricular Remodeling | 2004 |
[Role of endothelin in the development of cardiac hypertrophy].
Topics: Angiotensin II; Animals; Cardiomegaly; Cell Communication; Endothelin-1; GTP-Binding Protein alpha Subunits, Gq-G11; Hemodynamics; Humans; Receptor, Endothelin A; Stress, Mechanical; Ventricular Remodeling | 2004 |
[Molecular mechanism in heart failure].
Topics: Angiotensin II; Calcium; Calcium-Transporting ATPases; Collagen; Extracellular Signal-Regulated MAP Kinases; Gene Expression; Genes, Immediate-Early; Heart Failure; Humans; Microtubules; Myocardial Contraction; Oxidative Stress; Protein Kinase C; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Ribosomal Protein S6 Kinases; Ryanodine Receptor Calcium Release Channel; Transforming Growth Factor beta; Ventricular Remodeling | 2005 |
Disruptions and detours in the myocardial matrix highway and heart failure.
Topics: Angiotensin II; Disease Progression; Endothelin-1; Extracellular Matrix; Heart Failure; Humans; Hypertrophy, Left Ventricular; Integrins; Matrix Metalloproteinases; Myocardial Infarction; Myocardium; Transforming Growth Factor beta; Ventricular Remodeling | 2005 |
The renin-angiotensin systems: evolving pharmacological perspectives for cerebroprotection.
Topics: Angiotensin II; Animals; Blood Pressure; Brain Ischemia; Humans; Neuroprotective Agents; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, Angiotensin; Renin-Angiotensin System; Ventricular Remodeling | 2005 |
[Role of renin-angiotensin system in cardiovascular remodeling].
Topics: Angiotensin II; Animals; Cardiomegaly; Humans; Hypertension; JNK Mitogen-Activated Protein Kinases; MAP Kinase Kinase Kinase 5; Oxidative Stress; Reactive Oxygen Species; Renin-Angiotensin System; Transcription Factor AP-1; Ventricular Remodeling | 2006 |
[Cell proliferation].
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Cardiovascular Diseases; Cardiovascular System; Cell Proliferation; Humans; Receptor, Angiotensin, Type 2; Ventricular Remodeling | 2006 |
Role of transforming growth factor-beta in the progression of heart failure.
Topics: Angiotensin II; Animals; Cardiac Output, Low; Chronic Disease; Disease Progression; Heart Diseases; Humans; Myocardium; Signal Transduction; Transforming Growth Factor beta; Ventricular Remodeling | 2006 |
Early imaging in heart failure: exploring novel molecular targets.
Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Captopril; Fluorine Radioisotopes; Heart Failure; Humans; Imidazoles; Lisinopril; Positron-Emission Tomography; Pyridines; Radiopharmaceuticals; Renin-Angiotensin System; Ventricular Remodeling | 2007 |
[Angiotensin II and heart failure].
Topics: Angiotensin II; Heart Failure; Humans; Ventricular Remodeling | 2007 |
The intracellular renin-angiotensin system: implications in cardiovascular remodeling.
Topics: Angiotensin II; Animals; Cardiomegaly; Cardiovascular Agents; Extracellular Fluid; Fibrosis; Humans; Intracellular Fluid; Myocardium; Renin-Angiotensin System; Signal Transduction; Ventricular Remodeling | 2008 |
Regulatory mechanisms of atrial fibrotic remodeling in atrial fibrillation.
Topics: Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Atrial Fibrillation; Endomyocardial Fibrosis; Heart Atria; Humans; Inflammation; Matrix Metalloproteinases; Models, Biological; Oxidative Stress; Peptide Fragments; ras GTPase-Activating Proteins; Signal Transduction; Tissue Inhibitor of Metalloproteinases; Transforming Growth Factor beta1; Ventricular Remodeling | 2008 |
Cardiac remodelling by fibrous tissue: role of local factors and circulating hormones.
Topics: Aldosterone; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Endomyocardial Fibrosis; Female; Humans; Male; Myocardial Infarction; Prognosis; Renin-Angiotensin System; Ventricular Remodeling | 1998 |
[Mechanism involved in the onset of heart failure].
Topics: Angiotensin II; Animals; Calcium; Cardiomegaly; Endothelin-1; Heart Failure; Humans; Interleukin-1; Neurotransmitter Agents; Receptors, Adrenergic, beta; Ventricular Remodeling | 1998 |
Medical therapy of chronic heart failure. Role of ACE inhibitors and beta-blockers.
Topics: Adrenergic beta-Antagonists; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Down-Regulation; Heart Failure; Humans; Myocardium; Norepinephrine; Renin-Angiotensin System; Ventricular Remodeling | 1998 |
Role of tissue angiotensin II in myocardial remodelling induced by mechanical stress.
Topics: Angiotensin II; Angiotensin Receptor Antagonists; Animals; Antihypertensive Agents; Benzimidazoles; Biphenyl Compounds; Hydralazine; Hypertension; Myocardium; Rats; Rats, Inbred SHR; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Stress, Mechanical; Tetrazoles; Ventricular Remodeling | 1999 |
[The role of angiotensin II in the development of cardiovascular remodeling].
Topics: Angiotensin II; Animals; Endothelium, Vascular; Mice; Mice, Knockout; Neovascularization, Pathologic; Ventricular Remodeling | 1999 |
Interactions among ACE, kinins and NO.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Arteriosclerosis; Biological Availability; Cardiovascular Diseases; Endothelium, Vascular; Humans; Hypertension; Kinins; Myocardial Ischemia; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Peptide Fragments; Peptidyl-Dipeptidase A; Receptor, Angiotensin, Type 2; Receptors, Angiotensin; Ventricular Remodeling | 1999 |
Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis.
Topics: Angiotensin II; Animals; Collagenases; Extracellular Matrix; Extracellular Matrix Proteins; Fibroblasts; Fibrosis; Humans; Insulin-Like Growth Factor I; Integrins; Myocardium; Signal Transduction; Stress, Mechanical; Transforming Growth Factor beta; Ventricular Remodeling | 2000 |
[Resistance to ACE inhibitors. Myth or reality?].
Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Cardiovascular Diseases; Drug Resistance; Humans; Hypertension; Renin-Angiotensin System; Ventricular Remodeling | 2001 |
Dual effects of angiotensin II type 2 receptor on cardiovascular hypertrophy.
Topics: Angiotensin II; Animals; Cardiomegaly; Forecasting; Humans; Mice; Receptors, Angiotensin; Renin-Angiotensin System; Ventricular Remodeling | 2001 |
New approaches to antiarrhythmic therapy: emerging therapeutic applications of the cell biology of cardiac arrhythmias(1).
Topics: Angiotensin II; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Computer Simulation; Drug Design; Electrophysiology; Gene Expression Regulation; Gene Transfer Techniques; Genetic Therapy; GTP-Binding Proteins; Heart Conduction System; Humans; Ion Transport; Models, Cardiovascular; Myocardium; Potassium Channels; Stress, Mechanical; Ventricular Remodeling | 2001 |
Cardiomyocyte apoptotic cell death in arterial hypertension: mechanisms and potential management.
Topics: Angiotensin II; Animals; Antihypertensive Agents; Apoptosis; Humans; Hypertension; Myocardium; Stress, Mechanical; Ventricular Remodeling | 2001 |
Is angiotensin II a proliferative factor of cardiac fibroblasts?
Topics: Angiotensin II; Animals; Animals, Newborn; Cell Differentiation; Cell Division; Cells, Cultured; Fibroblasts; Growth Substances; Humans; Hypertrophy, Left Ventricular; Models, Animal; Myocardium; Rabbits; Rats; Ventricular Remodeling | 2002 |
5 trial(s) available for angiotensin ii and Cardiac Remodeling, Ventricular
Article | Year |
---|---|
Imidapril inhibits right ventricular remodeling induced by low ambient temperature in broiler chickens.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animal Husbandry; Animals; Chickens; Cold Temperature; Gene Expression Regulation; Heart Ventricles; Housing, Animal; Imidazolidines; Peptide Fragments; Peptidyl-Dipeptidase A; Ventricular Remodeling | 2013 |
Changeover Trial of Azilsartan and Olmesartan Comparing Effects on the Renin-Angiotensin-Aldosterone System in Patients with Essential Hypertension after Cardiac Surgery (CHAOS Study).
Topics: Aged; Aldosterone; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Antihypertensive Agents; Benzimidazoles; Biomarkers; Blood Pressure; Cardiac Surgical Procedures; Drug Substitution; Essential Hypertension; Female; Humans; Hypertension; Hypertrophy, Left Ventricular; Imidazoles; Japan; Male; Middle Aged; Oxadiazoles; Prospective Studies; Renin; Renin-Angiotensin System; Tetrazoles; Time Factors; Treatment Outcome; Ventricular Remodeling | 2016 |
Effects of spironolactone during an angiotensin II receptor blocker treatment on the left ventricular mass reduction in hypertensive patients with concentric left ventricular hypertrophy.
Topics: Aged; Aldosterone; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Benzimidazoles; Biphenyl Compounds; Blood Pressure; Echocardiography; Female; Heart Ventricles; Hemodynamics; Humans; Hypertension; Hypertrophy, Left Ventricular; Male; Middle Aged; Mineralocorticoid Receptor Antagonists; Natriuretic Peptide, Brain; Spironolactone; Tetrazoles; Ventricular Remodeling | 2006 |
[Effects of long term therapy with angiotensin converting enzyme inhibitor quinapril, antagonist of receptors to angiotensin II valsartan, and combination of quinapril and valsartan in patients with moderate chronic heart failure. Main results of the SADK
Topics: Adult; Aged; Aldosterone; Angiotensin II; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Antihypertensive Agents; Cardiac Output, Low; Chronic Disease; Drug Therapy, Combination; Exercise Tolerance; Female; Heart Rate; Humans; Male; Middle Aged; Norepinephrine; Quinapril; Tetrahydroisoquinolines; Tetrazoles; Treatment Outcome; Valine; Valsartan; Ventricular Remodeling | 2006 |
Changes in vasoconstrictive hormones, natriuretic peptides, and left ventricular remodeling soon after anterior myocardial infarction.
Topics: Angiotensin II; Atrial Natriuretic Factor; Biomarkers; Catecholamines; Dopamine; Double-Blind Method; Epinephrine; Epoprostenol; Female; Humans; Male; Middle Aged; Myocardial Infarction; Natriuretic Peptide, Brain; Nerve Tissue Proteins; Norepinephrine; Ramipril; Stroke Volume; Ventricular Remodeling | 2001 |
401 other study(ies) available for angiotensin ii and Cardiac Remodeling, Ventricular
Article | Year |
---|---|
Angiotensin-(3-7) alleviates isoprenaline-induced cardiac remodeling via attenuating cAMP-PKA and PI3K/Akt signaling pathways.
Topics: Angiotensin II; Animals; Cardiomegaly; Cardiovascular Agents; Cells, Cultured; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Disease Models, Animal; Fibrosis; Isoproterenol; Male; Mice, Inbred C57BL; Myocytes, Cardiac; Peptide Fragments; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats, Sprague-Dawley; Signal Transduction; Ventricular Remodeling | 2021 |
Overexpression of dimethylarginine dimethylaminohydrolase 1 protects from angiotensin II-induced cardiac hypertrophy and vascular remodeling.
Topics: Amidohydrolases; Angiotensin II; Animals; Aorta; Blood Pressure; Disease Models, Animal; Enzyme Induction; Fibrosis; Heart Ventricles; Hypertension; Hypertrophy, Left Ventricular; Inflammation Mediators; Male; Mice, Inbred C57BL; Mice, Transgenic; Time Factors; Vascular Remodeling; Vasodilation; Ventricular Function, Left; Ventricular Remodeling | 2021 |
Downregulation of miR-128 Ameliorates Ang II-Induced Cardiac Remodeling via SIRT1/PIK3R1 Multiple Targets.
Topics: Angiotensin II; Animals; Cardiomegaly; Mice, Inbred C57BL; MicroRNAs; Myocardium; Myocytes, Cardiac; Oxidative Stress; Sirtuin 1; Ventricular Remodeling | 2021 |
PKM2 promotes angiotensin-II-induced cardiac remodelling by activating TGF-β/Smad2/3 and Jak2/Stat3 pathways through oxidative stress.
Topics: Angiotensin II; Animals; Enzyme Inhibitors; Fibroblasts; Gene Expression; Hypertension; Janus Kinase 2; Male; Mice; Models, Biological; Oxidative Stress; Pyruvate Kinase; Reactive Oxygen Species; Smad2 Protein; Smad3 Protein; STAT3 Transcription Factor; Ventricular Remodeling | 2021 |
Allergic asthma aggravates angiotensin Ⅱ-induced cardiac remodeling in mice.
Topics: Angiotensin II; Animals; Asthma; Bronchoalveolar Lavage Fluid; Cardiovascular Diseases; Disease Models, Animal; Heart Failure; Immunoglobulin E; Mice; Mice, Inbred BALB C; Nutrition Surveys; Ovalbumin; Ventricular Remodeling | 2022 |
CCL17 Aggravates Myocardial Injury by Suppressing Recruitment of Regulatory T Cells.
Topics: Angiotensin II; Animals; Chemokine CCL17; Diphtheria Toxin; Heart Failure; Humans; Inflammation; Ligands; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardial Infarction; Phenylephrine; T-Lymphocytes, Regulatory; Ventricular Remodeling | 2022 |
LongShengZhi alleviated cardiac remodeling via upregulation microRNA-150-5p with matrix metalloproteinase 14 as the target.
Topics: Angiotensin II; Animals; Cardiomegaly; Drugs, Chinese Herbal; Fibrosis; Matrix Metalloproteinase 14; MicroRNAs; Myocytes, Cardiac; Rats; Up-Regulation; Ventricular Remodeling | 2022 |
Fibroblast growth factor 12 attenuated cardiac remodeling via suppressing oxidative stress.
Topics: Angiotensin II; Animals; Collagen; Fibroblast Growth Factors; Fibronectins; Fibrosis; Heart Failure; Mice; Myocardial Infarction; Myocardium; Oxidative Stress; Ventricular Remodeling | 2022 |
Oridonin Relieves Angiotensin II-Induced Cardiac Remodeling via Inhibiting GSDMD-Mediated Inflammation.
Topics: Angiotensin II; Animals; Diterpenes, Kaurane; Inflammation; Intracellular Signaling Peptides and Proteins; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Phosphate-Binding Proteins; Pore Forming Cytotoxic Proteins; Rats; Ventricular Remodeling | 2022 |
Ginkgolide A alleviates cardiac remodeling in mice with myocardial infarction via binding to matrix metalloproteinase-9 to attenuate inflammation.
Topics: Angiotensin II; Animals; Atrial Natriuretic Factor; Cardiomegaly; Cardiotonic Agents; Fibronectins; Fibrosis; Ginkgolides; Heart Diseases; Inflammation; Lactones; Matrix Metalloproteinase 9; Mice; Myocardial Infarction; Myocytes, Cardiac; Rats; Ventricular Remodeling | 2022 |
Naoxintong Capsule Activates the Nrf2/HO-1 Signaling Pathway and Suppresses the p38α Signaling Pathway Via Estrogen Receptors to Ameliorate Heart Remodeling in Female Mice With Postmenopausal Hypertension.
Topics: Angiotensin II; Animals; Body Weight; Drugs, Chinese Herbal; Female; Fibrosis; Heme Oxygenase-1; Hypertension; Membrane Proteins; Mice; Myocytes, Cardiac; NF-E2-Related Factor 2; Oxidative Stress; Postmenopause; Receptors, Estrogen; Signal Transduction; Ventricular Remodeling | 2022 |
Up-regulation of Nrf2/HO-1 and inhibition of TGF-β1/Smad2/3 signaling axis by daphnetin alleviates transverse aortic constriction-induced cardiac remodeling in mice.
Topics: Angiotensin II; Animals; Cardiomegaly; Collagen; Heme Oxygenase-1; Membrane Proteins; Mice; NF-E2-Related Factor 2; Reactive Oxygen Species; Signal Transduction; Smad2 Protein; Smad3 Protein; Transforming Growth Factor beta1; Umbelliferones; Up-Regulation; Ventricular Remodeling | 2022 |
Sulfasalazine exacerbates angiotensin II-induced cardiac remodelling by activating Akt signal pathway.
Topics: Angiotensin II; Animals; Cardiomegaly; Fibrosis; Hypertrophy; Mice; Mice, Inbred C57BL; Myocardium; Myocytes, Cardiac; Proto-Oncogene Proteins c-akt; Signal Transduction; Sulfasalazine; Ventricular Remodeling | 2022 |
FAM114A1 influences cardiac pathological remodeling by regulating angiotensin II signaling.
Topics: Adaptor Proteins, Signal Transducing; Angiotensin II; Animals; Heart Failure; Mice; Myocardium; Ventricular Remodeling | 2022 |
Tabersonine attenuates Angiotensin II-induced cardiac remodeling and dysfunction through targeting TAK1 and inhibiting TAK1-mediated cardiac inflammation.
Topics: Angiotensin II; Animals; Cardiomegaly; Fibrosis; Heart Failure; Indole Alkaloids; Inflammation; MAP Kinase Kinase Kinases; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Quinolines; Rats; Signal Transduction; Ventricular Remodeling | 2022 |
Postnatal Deletion of Bmal1 in Cardiomyocyte Promotes Pressure Overload Induced Cardiac Remodeling in Mice.
Topics: Angiotensin II; Animals; ARNTL Transcription Factors; Cardiomegaly; Disease Models, Animal; Fibrosis; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocytes, Cardiac; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Ventricular Remodeling | 2022 |
Rhein attenuates angiotensin II-induced cardiac remodeling by modulating AMPK-FGF23 signaling.
Topics: AMP-Activated Protein Kinases; Angiotensin II; Animals; Anthraquinones; Fibroblast Growth Factor-23; Fibrosis; Heart Failure; Hypertrophy; Male; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Rats; Ventricular Remodeling | 2022 |
Exercise-derived peptide protects against pathological cardiac remodeling.
Topics: Angiotensin II; Animals; China; Extracellular Matrix Proteins; Heart; Heart Failure; Humans; Hypertension; Mice; Myocytes, Cardiac; Ventricular Remodeling | 2022 |
Of Mouse and Man: Cross-Species Characterization of Hypertensive Cardiac Remodeling.
Topics: Angiotensin II; Animals; Blood Pressure; Disease Models, Animal; Fibrosis; Heart; Humans; Hypertension; Mice; Myocardium; Myocytes, Cardiac; Ventricular Remodeling | 2022 |
miR-21 upregulation exacerbates pressure overload-induced cardiac hypertrophy in aged hearts.
Topics: Angiotensin II; Animals; Cardiomegaly; Disease Models, Animal; Humans; Hypertension; Mice; Mice, Inbred C57BL; Mice, Knockout; MicroRNAs; Myocytes, Cardiac; Up-Regulation; Ventricular Remodeling | 2022 |
Genetic Deletion of Galectin-3 Exacerbates Age-Related Myocardial Hypertrophy and Fibrosis in Mice.
Topics: Angiotensin II; Animals; Cardiomegaly; Disease Models, Animal; Fibrosis; Galectin 3; Gene Deletion; Male; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; Sirtuin 1; Transforming Growth Factor beta; Ventricular Remodeling | 2022 |
Diacerein alleviates Ang II-induced cardiac inflammation and remodeling by inhibiting the MAPKs/c-Myc pathway.
Topics: Angiotensin II; Animals; Anthraquinones; Cardiomegaly; Cardiomyopathies; Fibrosis; Heart Failure; Hypertension; Inflammation; Mice; Mice, Inbred C57BL; Myocardium; Myocytes, Cardiac; RNA; Ventricular Remodeling | 2022 |
Vaspin Ameliorates Cardiac Remodeling by Suppressing Phosphoinositide 3-Kinase/Protein Kinase B Pathway to Improve Oxidative Stress in Heart Failure Rats.
Topics: Angiotensin II; Animals; Atrial Natriuretic Factor; Collagen; Fibrosis; Heart Failure; Myocardial Infarction; Myocytes, Cardiac; NADPH Oxidases; Natriuretic Peptide, Brain; Oxidative Stress; Phosphatidylinositol 3-Kinase; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Ventricular Remodeling | 2022 |
Secreted frizzled-related protein 3 alleviated cardiac remodeling induced by angiotensin II via inhibiting oxidative stress and apoptosis in mice.
Topics: Angiotensin II; Animals; Apoptosis; Cardiomegaly; Fibrosis; Hypertrophy; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Oxidative Stress; Rats; Ventricular Remodeling | 2022 |
Sclareol attenuates angiotensin II-induced cardiac remodeling and inflammation via inhibiting MAPK signaling.
Topics: Angiotensin II; Animals; Fibrosis; Heart Failure; Hypertension; Inflammation; Mice; Mice, Inbred C57BL; Mitogen-Activated Protein Kinases; Myocardium; Myocytes, Cardiac; Ventricular Remodeling | 2023 |
Upregulation of miR-335-5p Contributes to Right Ventricular Remodeling via Calumenin in Pulmonary Arterial Hypertension.
Topics: Angiotensin II; Animals; Antagomirs; Familial Primary Pulmonary Hypertension; Hypertension, Pulmonary; Hypoxia; Mice; MicroRNAs; Monocrotaline; Pulmonary Arterial Hypertension; Rats; Up-Regulation; Ventricular Remodeling | 2022 |
Dectin-1 Acts as a Non-Classical Receptor of Ang II to Induce Cardiac Remodeling.
Topics: Angiotensin II; Animals; Fibrosis; Heart Failure; Hypertension; Lectins, C-Type; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocytes, Cardiac; NF-kappa B; Ventricular Remodeling | 2023 |
Silicate Ions Derived from Calcium Silicate Extract Decelerate Ang II-Induced Cardiac Remodeling.
Topics: Angiotensin II; Animals; Calcium; Cardiomegaly; Mice; Silicates; Ventricular Remodeling | 2023 |
Aloe-emodin ameliorated MI-induced cardiac remodeling in mice via inhibiting TGF-β/SMAD signaling via up-regulating SMAD7.
Topics: Aloe; Angiotensin II; Animals; Cardiomyopathies; Emodin; Fibrosis; Hypertrophy; Mice; Myocardial Infarction; Myocardium; Myocytes, Cardiac; Rats; Signal Transduction; Smad7 Protein; Transforming Growth Factor beta1; Ventricular Remodeling | 2023 |
A novel caffeic acid derivative prevents angiotensin II-induced cardiac remodeling.
Topics: Angiotensin II; Animals; Caffeic Acids; Cardiomyopathies; Collagen; Fibroblasts; Fibrosis; Myocardium; Transforming Growth Factor beta; Ventricular Remodeling | 2023 |
Ablation of C-type natriuretic peptide/cGMP signaling in fibroblasts exacerbates adverse cardiac remodeling in mice.
Topics: Angiotensin II; Animals; Female; Fibroblasts; Fibrosis; Humans; Male; Mice; Natriuretic Peptide, C-Type; Vasodilator Agents; Ventricular Remodeling | 2023 |
Prolylcarboxypeptidase Alleviates Hypertensive Cardiac Remodeling by Regulating Myocardial Tissue Angiotensin II.
Topics: Angiotensin II; Animals; Fibrosis; Hypertension; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; Myocytes, Cardiac; Ventricular Remodeling | 2023 |
Integrin beta-like 1 mediates fibroblast-cardiomyocyte crosstalk to promote cardiac fibrosis and hypertrophy.
Topics: Angiotensin II; Animals; Cardiomegaly; Fibroblasts; Fibrosis; Heart Failure; Integrins; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Rats; Ventricular Remodeling | 2023 |
Targeting the adenosine monophosphate-activated protein kinase signalling pathway by bempedoic acid attenuates Angiotensin II-induced cardiac remodelling in renovascular hypertension in rats.
Topics: AMP-Activated Protein Kinases; Angiotensin II; Animals; Captopril; Hypertension; Hypertension, Renovascular; Male; Rats; Rats, Sprague-Dawley; Transforming Growth Factor beta; Ventricular Remodeling | 2023 |
Nuclear import of Mas-related G protein-coupled receptor member D induces pathological cardiac remodeling.
Topics: Active Transport, Cell Nucleus; Angiotensin II; Cardiomegaly; Humans; Ligands; Receptors, G-Protein-Coupled; Ventricular Remodeling | 2023 |
[Inhibitor of growth protein-2 silencing alleviates angiotensin Ⅱ-induced cardiac remodeling in mice by reducing p53 acetylation].
Topics: Acetylation; Angiotensin II; Animals; Mice; Myocytes, Cardiac; Stroke Volume; Tumor Suppressor Protein p53; Ventricular Function, Left; Ventricular Remodeling | 2023 |
Visfatin aggravates transverse aortic constriction-induced cardiac remodelling by enhancing macrophage-mediated oxidative stress in mice.
Topics: Angiotensin II; Animals; Aortic Valve Stenosis; Cardiomegaly; Constriction; Fibrosis; Macrophages; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Nicotinamide Phosphoribosyltransferase; Oxidative Stress; Ventricular Remodeling | 2023 |
20(S)-ginsenoside Rh2 inhibits angiotensin-2 mediated cardiac remodeling and inflammation associated with suppression of the JNK/AP-1 pathway.
Topics: Angiotensin II; Animals; Heart Failure; Hypertension; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Transcription Factor AP-1; Ventricular Remodeling | 2023 |
Novel Role for Pleckstrin Homology-Like Domain Family A, Member 3 in the Regulation of Pathological Cardiac Hypertrophy.
Topics: Angiotensin II; Animals; Aorta; Disease Models, Animal; Gene Knockout Techniques; Glycogen Synthase Kinase 3 beta; Humans; Hypertrophy, Left Ventricular; Mice; Mice, Knockout; Myocytes, Cardiac; Nuclear Proteins; Proto-Oncogene Proteins c-akt; Rats; Rats, Transgenic; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction; TOR Serine-Threonine Kinases; Ventricular Remodeling | 2019 |
Deficiency of MicroRNA miR-1954 Promotes Cardiac Remodeling and Fibrosis.
Topics: Actins; Angiotensin II; Animals; bcl-2 Homologous Antagonist-Killer Protein; Cardiomegaly; Caspase 3; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type III; Collagen Type IV; Connective Tissue Growth Factor; Disease Models, Animal; Fibrosis; High-Throughput Nucleotide Sequencing; Interleukin-6; Mice, Transgenic; MicroRNAs; Myocardium; Organ Size; S100 Calcium-Binding Protein A4; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Thrombospondin 1; Transforming Growth Factor beta1; Up-Regulation; Ventricular Remodeling | 2019 |
MiR-21, MiR-29a, GATA4, and MEF2c Expression Changes in Endothelin-1 and Angiotensin II Cardiac Hypertrophy Stimulated Isl-1
Topics: Angiotensin II; Animals; Antigens, Surface; Biomarkers; Cardiomegaly; Cells, Cultured; Cellular Reprogramming; Connexin 43; Disease Susceptibility; Endothelin-1; GATA4 Transcription Factor; Genetic Predisposition to Disease; Immunophenotyping; MEF2 Transcription Factors; MicroRNAs; Myoblasts, Cardiac; Phenotype; Swine; Ventricular Remodeling | 2019 |
Effect of an aqueous extract of Averrhoa carambola L. on endothelial function in rats with ventricular remodelling.
Topics: Angiotensin II; Animals; Averrhoa; Endothelin-1; Endothelium, Vascular; Female; Male; Myocardium; Nitric Oxide Synthase; Plant Extracts; Rats; Rats, Sprague-Dawley; Transforming Growth Factor beta; Ventricular Remodeling | 2020 |
Inhibition of microRNA-146a attenuated heart failure in myocardial infarction rats.
Topics: Angiotensin II; Animals; Animals, Newborn; Antagomirs; Atrial Remodeling; Disease Models, Animal; Heart; Heart Failure; Humans; MicroRNAs; Myocardial Infarction; Myocardium; Myocytes, Cardiac; Natriuretic Peptide, Brain; Rats; Rats, Sprague-Dawley; Ventricular Function, Left; Ventricular Remodeling | 2019 |
Pharmacological myeloperoxidase (MPO) inhibition in an obese/hypertensive mouse model attenuates obesity and liver damage, but not cardiac remodeling.
Topics: Angiotensin II; Animals; Diet, High-Fat; Disease Models, Animal; Heart Ventricles; Humans; Hypertension; Hypertrophy, Left Ventricular; Intra-Abdominal Fat; Liver; Male; Mice; Non-alcoholic Fatty Liver Disease; Obesity; Peroxidase; Severity of Illness Index; Thioxanthenes; Ventricular Remodeling | 2019 |
Tsantan Sumtang attenuated chronic hypoxia-induced right ventricular structure remodeling and fibrosis by equilibrating local ACE-AngII-AT1R/ACE2-Ang1-7-Mas axis in rat.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Fibrosis; Hypertrophy, Right Ventricular; Hypoxia; Male; Medicine, Tibetan Traditional; Peptide Fragments; Peptidyl-Dipeptidase A; Plant Preparations; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Ventricular Remodeling | 2020 |
Oleic Acid Attenuates Ang II (Angiotensin II)-Induced Cardiac Remodeling by Inhibiting FGF23 (Fibroblast Growth Factor 23) Expression in Mice.
Topics: Active Transport, Cell Nucleus; Angiotensin II; Animals; Collagen; Dependovirus; Female; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Gene Expression Regulation; Gene Ontology; Genetic Vectors; Humans; Hypertrophy, Left Ventricular; Male; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Nuclear Receptor Subfamily 4, Group A, Member 2; Oleic Acid; Signal Transduction; Specific Pathogen-Free Organisms; Ventricular Remodeling | 2020 |
Complement component C3 and the TLR co-receptor CD14 are not involved in angiotensin II induced cardiac remodelling.
Topics: Angiotensin II; Animals; Biomarkers; Blood Pressure; Cardiomegaly; Complement C3; Fibrosis; Hypertrophy; Interleukin-6; Lipopolysaccharide Receptors; Mice; Myocardium; Myocytes, Cardiac; Organ Size; RNA, Messenger; Systole; Toll-Like Receptors; Ventricular Remodeling | 2020 |
Neuron-derived orphan receptor-1 modulates cardiac gene expression and exacerbates angiotensin II-induced cardiac hypertrophy.
Topics: Angiotensin II; Animals; Biomarkers; Cardiomegaly; Collagen; Collagen Type I, alpha 1 Chain; Disease Models, Animal; Disease Progression; Electrocardiography; Fibroblasts; Fibrosis; Gene Expression Regulation; Humans; Inflammation; Mice, Inbred C57BL; Mice, Transgenic; Myocardium; Myocytes, Cardiac; Nuclear Receptor Subfamily 4, Group A, Member 3; Transcription, Genetic; Ventricular Remodeling | 2020 |
Phosphorylation of GATA4 at serine 105 is required for left ventricular remodelling process in angiotensin II-induced hypertension in rats.
Topics: Angiotensin II; Animals; Apoptosis; Cell Proliferation; Echocardiography; Fibroblasts; Fibrosis; GATA4 Transcription Factor; Hypertension; Male; Myocardial Infarction; Myocytes, Cardiac; Phosphorylation; Primary Cell Culture; Rats; Rats, Sprague-Dawley; Ventricular Remodeling | 2020 |
Hyperlipidemia inhibits the protective effect of lisinopril after myocardial infarction via activation of dendritic cells.
Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Apolipoproteins E; Dendritic Cells; Disease Models, Animal; Heart; Humans; Hyperlipidemias; Lipoproteins, LDL; Lisinopril; Mice; Mice, Knockout; Myeloid Differentiation Factor 88; Myocardial Infarction; Myocardium; NF-kappa B; Signal Transduction; Toll-Like Receptor 4; Ventricular Remodeling | 2020 |
Celastrol Attenuates Angiotensin II-Induced Cardiac Remodeling by Targeting STAT3.
Topics: Angiotensin II; Animals; Cell Line; Drug Delivery Systems; HEK293 Cells; Humans; Mice; Myocytes, Cardiac; Pentacyclic Triterpenes; Protein Structure, Tertiary; Random Allocation; Rats; STAT3 Transcription Factor; Tripterygium; Triterpenes; Ventricular Remodeling | 2020 |
Effects of Chronic Nicotine Inhalation on Systemic and Pulmonary Blood Pressure and Right Ventricular Remodeling in Mice.
Topics: Administration, Inhalation; Angiotensin II; Animals; Atmosphere Exposure Chambers; Blood Pressure; Cardiac Catheterization; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Mice; Mice, Inbred C57BL; Nicotine; Pulmonary Artery; Vascular Remodeling; Vascular Resistance; Ventricular Remodeling | 2020 |
TBC1D25 Regulates Cardiac Remodeling Through TAK1 Signaling Pathway.
Topics: Angiotensin II; Animals; Aorta; Cardiomegaly; Echocardiography; Gene Expression Regulation; GTPase-Activating Proteins; Heart Failure; Hypertrophy; Male; MAP Kinase Kinase Kinases; MAP Kinase Signaling System; Mice; Mice, Knockout; Myocytes, Cardiac; Phosphorylation; Protein Domains; Rats; Rats, Sprague-Dawley; Signal Transduction; Ventricular Remodeling | 2020 |
Effects of Estrogen on Cardiac mRNA and LncRNA Expression Profiles in Hypertensive Mice.
Topics: Angiotensin II; Animals; Blood Pressure; Disease Models, Animal; Estradiol; Estrogen Replacement Therapy; Female; Gene Expression Profiling; Hypertension; Mice, Inbred C57BL; Myocytes, Cardiac; Ovariectomy; Oxidative Stress; RNA, Long Noncoding; RNA, Messenger; Transcriptome; Ventricular Remodeling | 2021 |
[Study on protective effect of vanillic acid from Astragalus membranaceus on hypertensive cardiac remodeling based on network pharmacology screen].
Topics: Angiotensin II; Animals; Astragalus propinquus; Heart; Hypertension; Mice; Protective Agents; Vanillic Acid; Ventricular Remodeling | 2020 |
Cardiomyocyte-Specific Deletion of Orai1 Reveals Its Protective Role in Angiotensin-II-Induced Pathological Cardiac Remodeling.
Topics: Angiotensin II; Angiotensins; Animals; Calcium; Calcium Signaling; Carrier Proteins; Female; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Microfilament Proteins; Muscle Proteins; Myocardium; Myocytes, Cardiac; ORAI1 Protein; Stromal Interaction Molecule 1; Ventricular Remodeling | 2020 |
Activated FMS-like tyrosine kinase 3 ameliorates angiotensin II-induced cardiac remodelling.
Topics: Angiotensin II; Animals; Cardiomegaly; fms-Like Tyrosine Kinase 3; Male; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Rats; Ventricular Remodeling | 2020 |
Intermedin alleviates pathological cardiac remodeling by upregulating klotho.
Topics: Angiotensin II; Animals; Aorta, Abdominal; Calcineurin; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Cells, Cultured; Constriction; Disease Models, Animal; Fibrosis; Glucuronidase; Hypertrophy, Left Ventricular; Klotho Proteins; Mice, Inbred C57BL; Mice, Knockout; Myocytes, Cardiac; Neuropeptides; Peptide Hormones; Phosphorylation; PPAR gamma; Rats, Sprague-Dawley; Signal Transduction; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Remodeling | 2020 |
Rivaroxaban ameliorates angiotensin II-induced cardiac remodeling by attenuating TXNIP/Trx2 interaction in KKAy mice.
Topics: Angiotensin II; Animals; Carrier Proteins; Disease Models, Animal; Mice; Mice, Knockout; Rivaroxaban; Thioredoxins; Ventricular Remodeling | 2020 |
Neohesperidin inhibits cardiac remodeling induced by Ang II in vivo and in vitro.
Topics: Angiotensin II; Animals; Cells, Cultured; Disease Models, Animal; Fibrosis; Gene Expression Regulation; Hesperidin; Hypertrophy, Left Ventricular; Inflammation Mediators; Male; Mice, Inbred C57BL; Myocytes, Cardiac; Oxidative Stress; Rats, Sprague-Dawley; Signal Transduction; Ventricular Function, Left; Ventricular Remodeling | 2020 |
Sophocarpine ameliorates cardiac hypertrophy through activation of autophagic responses.
Topics: Alkaloids; Angiotensin II; Animals; Autophagy; Cardiomegaly; Gene Expression Regulation; Male; Mice; Mice, Inbred C57BL; Myocardium; Ventricular Remodeling | 2020 |
TRIF/EGFR signalling mediates angiotensin-II-induced cardiac remodelling in mice.
Topics: Adaptor Proteins, Vesicular Transport; Angiotensin II; Animals; Cardiomegaly; ErbB Receptors; Inflammation; Male; Mice, Inbred C57BL; Myocardium; Myocytes, Cardiac; RNA, Messenger; Signal Transduction; Ventricular Remodeling | 2020 |
Senolytic Agent Navitoclax Inhibits Angiotensin II-Induced Heart Failure in Mice.
Topics: Angiotensin II; Aniline Compounds; Animals; Apoptosis; Cardiac Pacing, Artificial; Cardiomegaly; Cells, Cultured; Cellular Senescence; Disease Models, Animal; Fibrosis; Heart Failure; Inflammation Mediators; Male; Mice, Inbred C57BL; Myocytes, Cardiac; Rats, Sprague-Dawley; Stroke Volume; Sulfonamides; Tachycardia, Ventricular; Ventricular Function, Left; Ventricular Remodeling | 2020 |
Bone marrow mesenchymal stem cell-derived exosomes attenuate cardiac hypertrophy and fibrosis in pressure overload induced remodeling.
Topics: Angiotensin II; Animals; Apoptosis; Cardiomegaly; Exosomes; Fibrosis; Male; Mesenchymal Stem Cells; Mice, Inbred C57BL; Myocytes, Cardiac; Myofibroblasts; Pressure; Ventricular Remodeling | 2020 |
Progression and regression of left ventricular hypertrophy and myocardial fibrosis in a mouse model of hypertension and concomitant cardiomyopathy.
Topics: Angiotensin II; Animals; Blood Pressure; Disease Models, Animal; Disease Progression; Fibrosis; Hypertension; Hypertrophy, Left Ventricular; Magnetic Resonance Imaging, Cine; Male; Mice, Inbred C57BL; Myocardium; Time Factors; Ventricular Function, Left; Ventricular Remodeling | 2020 |
Ubiquitin-specific protease 19 blunts pathological cardiac hypertrophy via inhibition of the TAK1-dependent pathway.
Topics: Angiotensin II; Animals; Animals, Newborn; Aortic Valve Stenosis; Cardiomegaly; CRISPR-Cas Systems; Disease Models, Animal; Endopeptidases; Fibrosis; Inflammation; Male; MAP Kinase Kinase Kinases; MAP Kinase Signaling System; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocytes, Cardiac; Phenylephrine; Pressure; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Ubiquitin-Protein Ligases; Ventricular Remodeling | 2020 |
The effects of liraglutide and dapagliflozin on cardiac function and structure in a multi-hit mouse model of heart failure with preserved ejection fraction.
Topics: Angiotensin II; Animals; Benzhydryl Compounds; Blood Glucose; Diet, High-Fat; Disease Models, Animal; Female; Fibrosis; Gene Expression Regulation; Glucagon-Like Peptide-1 Receptor; Glucosides; Heart Failure, Diastolic; Hypertrophy, Left Ventricular; Incretins; Liraglutide; Mice, Inbred C57BL; Myocardium; Signal Transduction; Sodium-Glucose Transporter 2 Inhibitors; Ventricular Function, Left; Ventricular Remodeling | 2021 |
C-C chemokine receptor 5 signaling contributes to cardiac remodeling and dysfunction under pressure overload.
Topics: Angiotensin II; Animals; Aorta, Thoracic; Cardiomyopathies; Cell Line; Chemokines, CC; Disease Models, Animal; Extracellular Signal-Regulated MAP Kinases; Female; Humans; Hypertrophy, Left Ventricular; Immunoglobulin G; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; p38 Mitogen-Activated Protein Kinases; Rats; Receptors, CCR5; Signal Transduction; Ventricular Remodeling | 2021 |
Cardiac Pressure Overload Decreases ETV1 Expression in the Left Atrium, Contributing to Atrial Electrical and Structural Remodeling.
Topics: Adolescent; Adult; Aged; Aged, 80 and over; Angiotensin II; Animals; Arrhythmias, Cardiac; Disease Models, Animal; DNA-Binding Proteins; Down-Regulation; Female; Heart Atria; Heart Failure; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Middle Aged; Neuregulin-1; Receptor, Transforming Growth Factor-beta Type I; Transcription Factors; Ventricular Remodeling; Young Adult | 2021 |
Leonurine Attenuates Myocardial Fibrosis Through Upregulation of miR-29a-3p in Mice Post-myocardial Infarction.
Topics: Angiotensin II; Animals; Cell Movement; Cell Proliferation; Cells, Cultured; Collagen; Disease Models, Animal; Fibroblasts; Fibrosis; Gallic Acid; Male; Mice, Inbred C57BL; MicroRNAs; Myocardial Infarction; Myocardium; Transforming Growth Factor beta; Up-Regulation; Ventricular Function, Left; Ventricular Remodeling | 2021 |
Mep1a contributes to Ang II-induced cardiac remodeling by promoting cardiac hypertrophy, fibrosis and inflammation.
Topics: Angiotensin II; Animals; Cardiomegaly; Cytokines; Fibrosis; Inflammation; Macrophages; Male; Metalloendopeptidases; Mice; Mice, Inbred C57BL; Mice, Knockout; Signal Transduction; Ventricular Remodeling | 2021 |
The Histamine 3 Receptor Is Expressed in the Heart and Its Activation Opposes Adverse Cardiac Remodeling in the Angiotensin II Mouse Model.
Topics: Angiotensin II; Animals; Disease Models, Animal; Fibrosis; Inflammation; Male; Mice; Mice, Inbred C57BL; Rats; Rats, Sprague-Dawley; Receptors, Histamine H3; Ventricular Remodeling | 2020 |
PHD Finger Protein 19 Promotes Cardiac Hypertrophy via Epigenetically Regulating SIRT2.
Topics: Angiotensin II; Animals; Cardiomegaly; Cells, Cultured; Disease Models, Animal; DNA Methylation; DNA-Binding Proteins; Epigenesis, Genetic; Gene Expression Regulation, Enzymologic; Humans; Male; Mice, Inbred C57BL; Myocytes, Cardiac; Rats, Sprague-Dawley; Sirtuin 2; Transcription Factors; Ventricular Remodeling | 2021 |
Prevention of Fibrosis and Pathological Cardiac Remodeling by Salinomycin.
Topics: Angiotensin II; Animals; Antifibrotic Agents; Cardiomegaly; Cell Survival; Disease Models, Animal; Extracellular Matrix; Fibrosis; Gene Expression; Heart Failure; Humans; Male; Mice; Mice, Inbred C57BL; Myocardial Infarction; Myocardium; Myofibroblasts; NIH 3T3 Cells; p38 Mitogen-Activated Protein Kinases; Pyrans; rho-Associated Kinases; Ventricular Remodeling | 2021 |
Constitutive protein kinase G activation exacerbates stress-induced cardiomyopathy.
Topics: Angiotensin II; Animals; Cardiomyopathies; Cyclic GMP-Dependent Protein Kinase Type I; Cyclic GMP-Dependent Protein Kinases; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocytes, Cardiac; Ventricular Remodeling | 2022 |
Lutein attenuates angiotensin II- induced cardiac remodeling by inhibiting AP-1/IL-11 signaling.
Topics: Angiotensin II; Animals; Cardiomegaly; Fibrosis; Interleukin-11; Lutein; Mice; Mice, Inbred C57BL; Myocardium; Rats; Transcription Factor AP-1; Ventricular Remodeling | 2021 |
Dapagliflozin: a sodium-glucose cotransporter 2 inhibitor, attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling.
Topics: Angiotensin II; Animals; Antifibrotic Agents; Benzhydryl Compounds; Cells, Cultured; Disease Models, Animal; Fibroblasts; Fibrosis; Glucosides; Hypertrophy, Left Ventricular; Male; Myocardium; Rats, Sprague-Dawley; Signal Transduction; Smad Proteins; Sodium-Glucose Transporter 2 Inhibitors; Transforming Growth Factor beta1; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Remodeling | 2021 |
Inactivation of Interleukin-4 Receptor α Signaling in Myeloid Cells Protects Mice From Angiotensin II/High Salt-Induced Cardiovascular Dysfunction Through Suppression of Fibrotic Remodeling.
Topics: Angiotensin II; Animals; Disease Models, Animal; Fibrosis; Hypertension; Macrophage Activation; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myeloid Cells; Myocardium; Receptors, Cell Surface; Signal Transduction; Sodium Chloride, Dietary; Ventricular Remodeling | 2021 |
An organ-on-a-chip model for pre-clinical drug evaluation in progressive non-genetic cardiomyopathy.
Topics: Angiotensin II; Animals; Cardiomyopathies; Cardiotonic Agents; Cell Line; Cell Survival; Coculture Techniques; Drug Evaluation, Preclinical; Fibroblasts; Fibrosis; Humans; Induced Pluripotent Stem Cells; Lab-On-A-Chip Devices; Losartan; Mice; Myocytes, Cardiac; Pilot Projects; Proteome; Proteomics; Recombinant Proteins; Relaxin; Ventricular Remodeling | 2021 |
Zinc finger and BTB domain-containing protein 20 aggravates angiotensin II-induced cardiac remodeling via the EGFR-AKT pathway.
Topics: Angiotensin II; Animals; BTB-POZ Domain; ErbB Receptors; Mice; Myocytes, Cardiac; Proto-Oncogene Proteins c-akt; Transcription Factors; Ventricular Remodeling; Zinc Fingers | 2022 |
PDGF-D activation by macrophage-derived uPA promotes AngII-induced cardiac remodeling in obese mice.
Topics: Adipocytes; Angiotensin II; Animals; Heart; Hypertension; Lymphokines; Macrophages; Mice, Inbred C57BL; Mice, Knockout; Mice, Obese; Mice, Transgenic; Myocardium; Obesity; Platelet-Derived Growth Factor; Urokinase-Type Plasminogen Activator; Ventricular Remodeling | 2021 |
Fibroblast-specific IKK-β deficiency ameliorates angiotensin II-induced adverse cardiac remodeling in mice.
Topics: Angiotensin II; Animals; Blood Pressure; Cardiomegaly; Cell Differentiation; Cell Movement; Cell Proliferation; Cells, Cultured; Collagen Type I; Fibroblasts; Fibrosis; Gene Knockdown Techniques; Heart Rate; Hypertension; I-kappa B Kinase; Inflammation; Macrophages; Male; Mice; Myocarditis; Myocardium; Organ Size; Protective Factors; Signal Transduction; Ventricular Remodeling | 2021 |
MicroRNA-27b-3p down-regulates FGF1 and aggravates pathological cardiac remodelling.
Topics: Angiotensin II; Animals; Cardiomegaly; Fibroblast Growth Factor 1; Fibrosis; Mice; Mice, Knockout; MicroRNAs; Myocytes, Cardiac; Ventricular Remodeling | 2022 |
Resolvin-D1 attenuation of angiotensin II-induced cardiac inflammation in mice is associated with prevention of cardiac remodeling and hypertension.
Topics: Angiotensin II; Animals; Cardiomegaly; Chemokine CCL2; Disease Models, Animal; Docosahexaenoic Acids; Gene Expression Regulation; Humans; Hypertension; Inflammation; Intercellular Adhesion Molecule-1; Interleukin-1beta; Interleukin-6; Mice; Renin-Angiotensin System; Tumor Necrosis Factor-alpha; Vascular Cell Adhesion Molecule-1; Ventricular Remodeling | 2021 |
Vinpocetine Attenuates Pathological Cardiac Remodeling by Inhibiting Cardiac Hypertrophy and Fibrosis.
Topics: Angiotensin II; Animals; Cardiomegaly; Cardiomyopathies; Cell Proliferation; Cells, Cultured; Cyclic Nucleotide Phosphodiesterases, Type 1; Cytoprotection; Disease Models, Animal; Dose-Response Relationship, Drug; Extracellular Matrix; Extracellular Matrix Proteins; Fibroblasts; Fibrosis; Male; Mice, Inbred C57BL; Myocytes, Cardiac; Phosphodiesterase Inhibitors; Signal Transduction; Ventricular Remodeling; Vinca Alkaloids | 2017 |
Critical Role of ADAMTS2 (A Disintegrin and Metalloproteinase With Thrombospondin Motifs 2) in Cardiac Hypertrophy Induced by Pressure Overload.
Topics: ADAMTS Proteins; Angiotensin II; Animals; Biopsy, Needle; Cardiomegaly; Disease Models, Animal; Disintegrins; Gene Expression Regulation; Humans; Metalloproteases; Mice; Mice, Transgenic; Myocytes, Cardiac; Phosphatidylinositol 3-Kinases; Phosphorylation; Proto-Oncogene Proteins c-akt; Random Allocation; Signal Transduction; Thrombospondins; Tissue Culture Techniques; Up-Regulation; Ventricular Dysfunction, Left; Ventricular Remodeling | 2017 |
The NRF2 activator DH404 attenuates adverse ventricular remodeling post-myocardial infarction by modifying redox signalling.
Topics: Angiotensin II; Animals; Atrial Natriuretic Factor; Cells, Cultured; Disease Models, Animal; Fibronectins; Glutaredoxins; Heart; Humans; Male; Myocardial Infarction; NF-E2-Related Factor 2; Nitric Oxide Synthase Type III; Oleanolic Acid; Oxidation-Reduction; Rats; Rats, Sprague-Dawley; RNA, Small Interfering; Signal Transduction; Ventricular Remodeling | 2017 |
Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy.
Topics: Angiotensin II; Animals; Cardiomegaly; Fibroblasts; Gene Expression Regulation, Enzymologic; Humans; Inflammation; Mice; Mice, Transgenic; Myocardium; Protein-Lysine 6-Oxidase; Signal Transduction; Ventricular Remodeling | 2017 |
The ACE2-Ang (1-7)-Mas receptor axis attenuates cardiac remodeling and fibrosis in post-myocardial infarction.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Collagen; Fibrosis; Heart Function Tests; Immunohistochemistry; Male; Myocardial Infarction; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; RNA, Messenger; Ventricular Dysfunction, Left; Ventricular Remodeling | 2017 |
Vaccarin administration ameliorates hypertension and cardiovascular remodeling in renovascular hypertensive rats.
Topics: Angiotensin II; Animals; Antihypertensive Agents; Captopril; Disease Models, Animal; Flavonoids; Gene Expression Regulation; Glycosides; Hypertension; Male; Norepinephrine; Oxidative Stress; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Renin; Ventricular Remodeling | 2018 |
The valosin-containing protein is a novel repressor of cardiomyocyte hypertrophy induced by pressure overload.
Topics: Angiotensin II; Animals; Aorta; Blood Pressure; Cardiomegaly; Cerebrovascular Disorders; Echocardiography; Gene Expression Regulation; Hypertension; Hypertrophy, Left Ventricular; Male; Mechanistic Target of Rapamycin Complex 1; Mice, Transgenic; Myocardium; Myocytes, Cardiac; Pressure; Primary Cell Culture; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Signal Transduction; Valosin Containing Protein; Ventricular Remodeling | 2017 |
Sirtuin 3 Deficiency Accelerates Hypertensive Cardiac Remodeling by Impairing Angiogenesis.
Topics: Acetylation; Angiotensin II; Animals; Cardiomegaly; Cells, Cultured; Collagen Type I; Collagen Type III; Disease Models, Animal; Disease Progression; Fibrosis; Genetic Predisposition to Disease; Hypertension; Mice, 129 Strain; Mice, Knockout; Mitochondria, Heart; Mitophagy; Myocardium; Neovascularization, Physiologic; Oxidative Stress; Phenotype; Protein Kinases; Signal Transduction; Sirtuin 3; Time Factors; Tissue Culture Techniques; Ubiquitin-Protein Ligases; Ventricular Remodeling | 2017 |
Inhibition of microRNA‑155 ameliorates cardiac fibrosis in the process of angiotensin II‑induced cardiac remodeling.
Topics: Angiotensin II; Animals; Antagomirs; Cells, Cultured; Fibroblasts; Fibrosis; Heart; Heart Ventricles; Leukocytes, Mononuclear; Male; Mice; Mice, Inbred C57BL; MicroRNAs; Myocardium; Smad3 Protein; Spleen; Suppressor of Cytokine Signaling 1 Protein; Transforming Growth Factor beta1; Ventricular Remodeling | 2017 |
Apelin Is a Negative Regulator of Angiotensin II-Mediated Adverse Myocardial Remodeling and Dysfunction.
Topics: Angiotensin II; Animals; Animals, Newborn; Apelin; Apoptosis; Cells, Cultured; Disease Models, Animal; Hypertension; Hypertrophy, Left Ventricular; Male; Mice; Mice, Knockout; Myocytes, Cardiac; Oxidative Stress; Rats, Sprague-Dawley; Ventricular Remodeling | 2017 |
Kaempferol Alleviates Angiotensin II-Induced Cardiac Dysfunction and Interstitial Fibrosis in Mice.
Topics: Angiotensin II; Animals; Atrial Natriuretic Factor; Cardiomegaly; Cell Survival; Cells, Cultured; Collagen Type I; Collagen Type II; Echocardiography; Fibroblasts; Fibrosis; Heart Ventricles; Human Umbilical Vein Endothelial Cells; Humans; Kaempferols; Male; Mice; Mice, Inbred C57BL; Microscopy, Fluorescence; Mitogen-Activated Protein Kinases; Myocardium; Myocytes, Cardiac; Natriuretic Peptide, Brain; Rats; Signal Transduction; Transforming Growth Factor beta1; Ventricular Remodeling | 2017 |
Nox4 genetic inhibition in experimental hypertension and metabolic syndrome.
Topics: Angiotensin II; Animals; Biomarkers; Blood Glucose; Blood Pressure; Cardiomegaly; Diet, High-Fat; Disease Models, Animal; Female; Fibrosis; Genetic Predisposition to Disease; Heart Rate; Hypertension; Male; Metabolic Syndrome; Mice, Inbred C57BL; Mice, Knockout; Myocardium; NADPH Oxidase 4; Phenotype; Reactive Oxygen Species; Time Factors; Triglycerides; Ventricular Remodeling | 2018 |
Steroid receptor coactivator-2 (SRC-2) coordinates cardiomyocyte paracrine signaling to promote pressure overload-induced angiogenesis.
Topics: Angiogenesis Inducing Agents; Angiotensin II; Animals; Heart Ventricles; Hypertrophy, Left Ventricular; Hypoxia-Inducible Factor 1, alpha Subunit; Mice; Mice, Knockout; Myocardium; Myocytes, Cardiac; Neovascularization, Pathologic; Nuclear Receptor Coactivator 2; Paracrine Communication; Transcriptional Activation; Vascular Endothelial Growth Factor A; Ventricular Remodeling | 2017 |
An RNA‑sequencing study identifies candidate genes for angiotensin II‑induced cardiac remodeling.
Topics: Angiotensin II; Animals; Rats; Sequence Analysis, RNA; Transcriptome; Ventricular Remodeling | 2018 |
Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: Role for local angiotensin II reduction.
Topics: Angiotensin II; Animals; Hypertension; Inflammation; Male; Myocardium; Oxidative Stress; Physical Conditioning, Animal; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Reactive Oxygen Species; Real-Time Polymerase Chain Reaction; Ventricular Remodeling | 2017 |
Defective p27 phosphorylation at serine 10 affects vascular reactivity and increases abdominal aortic aneurysm development via Cox-2 activation.
Topics: Acetylcholine; Angiotensin II; Animals; Aorta; Aortic Aneurysm, Abdominal; Blood Pressure; Cyclin-Dependent Kinase Inhibitor p27; Cyclooxygenase 2; Endothelial Cells; Enzyme Activation; Mice, Inbred C57BL; Phosphorylation; Phosphoserine; Thromboxanes; Vasodilation; Ventricular Remodeling | 2018 |
Osteoglycin attenuates cardiac fibrosis by suppressing cardiac myofibroblast proliferation and migration through antagonizing lysophosphatidic acid 3/matrix metalloproteinase 2/epidermal growth factor receptor signalling.
Topics: Angiotensin II; Animals; Cardiomegaly; Cell Movement; Cell Proliferation; Cells, Cultured; Disease Models, Animal; ErbB Receptors; Fibrosis; Hypertension; Intercellular Signaling Peptides and Proteins; Matrix Metalloproteinase 14; Matrix Metalloproteinase 2; Mice, Inbred C57BL; Mitogen-Activated Protein Kinases; Myocytes, Cardiac; Myofibroblasts; Receptor Cross-Talk; Receptors, Lysophosphatidic Acid; rho GTP-Binding Proteins; rho-Associated Kinases; rhoA GTP-Binding Protein; Signal Transduction; Ventricular Remodeling | 2018 |
Effects and Mechanism of SO2 Inhalation on Rat Myocardial Collagen Fibers.
Topics: Angiotensin II; Animals; Blood Pressure; Body Weights and Measures; Collagen; Heart; Heart Ventricles; Hydroxyproline; Hypertension; Losartan; Male; Myocardium; Myocytes, Cardiac; Rats; Sulfur Dioxide; Ventricular Remodeling | 2018 |
Co-administration of resveratrol with doxorubicin in young mice attenuates detrimental late-occurring cardiovascular changes.
Topics: Adaptation, Physiological; Angiotensin II; Animals; Blood Pressure; Cardiotoxicity; Disease Models, Animal; Doxorubicin; Enzyme Activation; Heart Diseases; Hypertension; Male; Mice, Inbred C57BL; Myocytes, Cardiac; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Resveratrol; Signal Transduction; Time Factors; Ventricular Remodeling | 2018 |
CD1d-dependent natural killer T cells attenuate angiotensin II-induced cardiac remodelling via IL-10 signalling in mice.
Topics: Adoptive Transfer; Angiotensin II; Animals; Antigens, CD1d; Cardiomegaly; Cells, Cultured; Coculture Techniques; Dendritic Cells; Disease Models, Animal; Fibrosis; Galactosylceramides; Hypertension; Inflammation Mediators; Interleukin-10; Male; Mice, Inbred C57BL; Mice, Knockout; Myocytes, Cardiac; Natural Killer T-Cells; NF-kappa B; Signal Transduction; STAT3 Transcription Factor; Transforming Growth Factor beta1; Ventricular Remodeling | 2019 |
CTGF/CCN2 is an autocrine regulator of cardiac fibrosis.
Topics: Angiotensin II; Animals; Autocrine Communication; Connective Tissue Growth Factor; Fibrosis; Heart Failure; Humans; Mice; Myocytes, Cardiac; Myofibroblasts; Ventricular Remodeling | 2018 |
Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving 'SIRT1 and PGC-1α'.
Topics: Angiotensin II; Animals; Caloric Restriction; Cells, Cultured; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Disease Models, Animal; Fibrosis; Hypertension; Male; Mice, Inbred C57BL; Myocardium; Obesity; Oxidative Stress; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Rats, Sprague-Dawley; Signal Transduction; Sirtuin 1; Ventricular Remodeling | 2018 |
Anti-hypertrophy effect of atorvastatin on myocardium depends on AMPK activation-induced miR-143-3p suppression via Foxo1.
Topics: AMP-Activated Protein Kinases; Angiotensin II; Animals; Apoptosis; Atorvastatin; Cell Line; Cell Survival; Disease Models, Animal; Hypertrophy, Left Ventricular; Male; MicroRNAs; Myocytes, Cardiac; Nerve Tissue Proteins; Rats, Sprague-Dawley; Signal Transduction; Ventricular Function, Left; Ventricular Remodeling | 2018 |
[Role of ACE2-Ang (1-7)-Mas receptor axis in heart failure with preserved ejection fraction with hypertension].
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Atrial Remodeling; Case-Control Studies; Enzyme-Linked Immunosorbent Assay; Heart Failure; Humans; Hypertension; Male; Peptide Fragments; Peptidyl-Dipeptidase A; Random Allocation; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Stroke Volume; Ventricular Function, Left; Ventricular Remodeling | 2018 |
[Effects of Scrophulariae Radix and Split Component on Isoproterenol-Induced Ventricular Remodeling in Rat].
Topics: Angiotensin II; Animals; Atrial Natriuretic Factor; Endothelin-1; Isoproterenol; Myocardium; Plant Roots; Rats; Rats, Sprague-Dawley; Ventricular Remodeling | 2016 |
Administration of ubiquitin-activating enzyme UBA1 inhibitor PYR-41 attenuates angiotensin II-induced cardiac remodeling in mice.
Topics: Angiotensin II; Animals; Benzoates; Blood Pressure; Cardiomegaly; Fibrosis; Furans; Gene Expression; Heart; Hypertension; Male; Mice; Myocardium; Pyrazoles; Signal Transduction; Ubiquitin-Activating Enzymes; Ventricular Remodeling | 2018 |
AdipoRon, an adiponectin receptor agonist, attenuates cardiac remodeling induced by pressure overload.
Topics: AMP-Activated Protein Kinases; Angiotensin II; Animals; Blood Pressure; Cardiomegaly; Cell Differentiation; Fibroblasts; Humans; Male; Mice, Inbred C57BL; Mice, Knockout; Piperidines; Rats, Sprague-Dawley; Receptors, Adiponectin; Transforming Growth Factor beta1; Ventricular Remodeling | 2018 |
Hyperoside Protects Against Pressure Overload-Induced Cardiac Remodeling via the AKT Signaling Pathway.
Topics: Angiotensin II; Animals; Atrial Natriuretic Factor; Cardiomegaly; Cells, Cultured; Disease Models, Animal; Interleukin-1beta; Male; Mice; Mice, Inbred C57BL; Myocardium; Myocytes, Cardiac; Oxidative Stress; Protective Agents; Proto-Oncogene Proteins c-akt; Quercetin; Rats; Signal Transduction; Superoxide Dismutase; Ventricular Remodeling | 2018 |
Loss of Apelin Augments Angiotensin II-Induced Cardiac Dysfunction and Pathological Remodeling.
Topics: Angiotensin II; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Apelin; Biopsy; Cardiomegaly; Disease Models, Animal; Echocardiography; Fibrosis; Heart Failure; Hypertension; Mice; Mice, Knockout; Myocardial Contraction; Myocytes, Cardiac; Peptidyl-Dipeptidase A; Ventricular Dysfunction; Ventricular Remodeling | 2019 |
Role of cardiac mast cells in exercise training-mediated cardiac remodeling in angiotensin II-infused ovariectomized rats.
Topics: Angiotensin II; Animals; Female; Mast Cells; Myocytes, Cardiac; Ovariectomy; Physical Conditioning, Animal; Rats; Rats, Sprague-Dawley; Ventricular Remodeling | 2019 |
2-Methoxyestradiol Attenuates Angiotensin II-Induced Hypertension, Cardiovascular Remodeling, and Renal Injury.
Topics: 2-Methoxyestradiol; Angiotensin II; Animals; Blood Pressure; Fibrosis; Glomerular Filtration Rate; Hypertension; Hypertrophy, Left Ventricular; Isoproterenol; Kidney; Kidney Diseases; Male; Rats, Sprague-Dawley; Renin-Angiotensin System; Vascular Remodeling; Ventricular Function, Left; Ventricular Remodeling | 2019 |
Sialyltransferase7A promotes angiotensin II-induced cardiomyocyte hypertrophy via HIF-1α-TAK1 signalling pathway.
Topics: Angiotensin II; Animals; Cell Line; Disease Models, Animal; Gene Expression Regulation, Enzymologic; Humans; Hypertrophy, Left Ventricular; Hypoxia-Inducible Factor 1, alpha Subunit; Male; MAP Kinase Kinase Kinases; Myocytes, Cardiac; Rats, Wistar; RNA Interference; Sialyltransferases; Signal Transduction; Ventricular Function, Left; Ventricular Remodeling | 2020 |
Epigenetic modulation of tenascin C in the heart: implications on myocardial ischemia, hypertrophy and metabolism.
Topics: Angiotensin II; Animals; Cardiomegaly; Coronary Artery Disease; DNA Methylation; Energy Metabolism; Epigenesis, Genetic; Extracellular Matrix; Extracellular Matrix Proteins; Fibrosis; Heart Diseases; Humans; Hypertrophy; Hypoxia; Male; Matrix Metalloproteinase 2; MicroRNAs; Myocardial Infarction; Myocardium; Nerve Tissue Proteins; Rats; Tenascin; Ventricular Remodeling | 2019 |
Cardioprotection Conferred by Sitagliptin Is Associated with Reduced Cardiac Angiotensin II/Angiotensin-(1-7) Balance in Experimental Chronic Kidney Disease.
Topics: Angiotensin I; Angiotensin II; Animals; Anti-Inflammatory Agents; Antioxidants; Blood Pressure; Body Weight; Cardiotonic Agents; Diastole; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Kidney; Kidney Function Tests; Male; Myocardium; Peptide Fragments; Peptidyl-Dipeptidase A; Rats, Wistar; Renal Insufficiency, Chronic; Renin-Angiotensin System; Sitagliptin Phosphate; Up-Regulation; Ventricular Remodeling | 2019 |
Cardiac hypertrophy in mice submitted to a swimming protocol: influence of training volume and intensity on myocardial renin-angiotensin system.
Topics: Angiotensin I; Angiotensin II; Animals; Cardiomegaly; Hypertrophy, Left Ventricular; Male; Mice, Inbred BALB C; Myocardium; Peptide Fragments; Physical Conditioning, Animal; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Swimming; Ventricular Remodeling | 2019 |
Endothelial Forkhead Box Transcription Factor P1 Regulates Pathological Cardiac Remodeling Through Transforming Growth Factor-β1-Endothelin-1 Signal Pathway.
Topics: Angiotensin II; Animals; Aorta; Disease Models, Animal; Endothelin-1; Endothelium, Vascular; Fibrosis; Forkhead Transcription Factors; Heart Failure; Humans; Mice; Mice, Knockout; Myocardium; Nanotubes, Peptide; Repressor Proteins; RNA, Small Interfering; Signal Transduction; Transforming Growth Factor beta1; Ventricular Remodeling | 2019 |
Sodium (±)-5-bromo-2-(α-hydroxypentyl) benzoate ameliorates pressure overload-induced cardiac hypertrophy and dysfunction through inhibiting autophagy.
Topics: AMP-Activated Protein Kinases; Angiotensin II; Animals; Autophagy; Cardiomegaly; Cell Line; Heart Failure; Male; Metformin; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Rats; Rats, Sprague-Dawley; Signal Transduction; TOR Serine-Threonine Kinases; Ventricular Remodeling | 2019 |
Prehypertension exercise training attenuates hypertension and cardiac hypertrophy accompanied by temporal changes in the levels of angiotensin II and angiotensin (1-7).
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Cardiomegaly; Diastole; Male; Myocardium; Peptide Fragments; Peptidyl-Dipeptidase A; Physical Conditioning, Animal; Prehypertension; Rats, Inbred SHR; Rats, Inbred WKY; Ventricular Remodeling | 2019 |
Podoplanin neutralization improves cardiac remodeling and function after acute myocardial infarction.
Topics: Angiotensin II; Animals; Antibodies, Neutralizing; Cardiomyopathies; Cell Survival; Cicatrix; Echocardiography; Fibrosis; Heart Failure; Heart Transplantation; Hemodynamics; Humans; Hypertrophy, Left Ventricular; Inflammation; Macrophages; Membrane Glycoproteins; Mice; Monocytes; Myocardial Infarction; Myocardial Ischemia; Myocytes, Cardiac; Regeneration; Vasoconstrictor Agents; Ventricular Function, Left; Ventricular Remodeling | 2019 |
Klotho inhibits angiotensin II-induced cardiac hypertrophy, fibrosis, and dysfunction in mice through suppression of transforming growth factor-β1 signaling pathway.
Topics: Angiotensin II; Animals; Cardiomegaly; Down-Regulation; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibrosis; Glucuronidase; Klotho Proteins; Male; Mice; Mice, Inbred C57BL; MicroRNAs; Myocytes, Cardiac; Signal Transduction; Transforming Growth Factor beta1; Ventricular Remodeling | 2019 |
Kaempferol Prevents Against Ang II-induced Cardiac Remodeling Through Attenuating Ang II-induced Inflammation and Oxidative Stress.
Topics: AMP-Activated Protein Kinases; Angiotensin II; Animals; Anti-Inflammatory Agents; Antioxidants; Cells, Cultured; Collagen; Disease Models, Animal; Fibroblasts; Fibrosis; Heart Failure; Inflammation Mediators; Kaempferols; Male; Mice, Inbred C57BL; Mitogen-Activated Protein Kinases; Myocytes, Cardiac; NF-E2-Related Factor 2; NF-kappa B; Oxidative Stress; Rats, Sprague-Dawley; Signal Transduction; Ventricular Function, Left; Ventricular Remodeling | 2019 |
Decrease in blood pressure and regression of cardiovascular complications by angiotensin II vaccine in mice.
Topics: Angiotensin II; Animals; Antibodies, Neutralizing; Antibody Formation; Blood Pressure; Cardiovascular Diseases; Humans; Hypertension; Immunization; Kidney; Lymphocyte Activation; Male; Mice; Mice, Inbred C57BL; Models, Cardiovascular; Myocardium; Rats; Rats, Inbred SHR; T-Lymphocytes; Vaccines; Ventricular Remodeling | 2013 |
Exercise, load and remodelling: do we know what we think we know?
Topics: Angiotensin II; Animals; Female; Hypertension; Physical Conditioning, Animal; Ventricular Remodeling | 2013 |
Is exercise really deleterious for the hypertensive heart?
Topics: Angiotensin II; Animals; Female; Hypertension; Physical Conditioning, Animal; Ventricular Remodeling | 2013 |
Reply from Klaus-Dieter Schluter and Rolf Schreckenberg.
Topics: Angiotensin II; Animals; Female; Hypertension; Physical Conditioning, Animal; Ventricular Remodeling | 2013 |
Deficiency of senescence marker protein 30 exacerbates angiotensin II-induced cardiac remodelling.
Topics: Aging; Angiotensin II; Animals; Apoptosis; Ascorbic Acid; bcl-2-Associated X Protein; Biomarkers; Calcium-Binding Proteins; Cardiomegaly; Caspase 3; Disease Models, Animal; Fibrosis; Heart Failure; Intracellular Signaling Peptides and Proteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; Oxidative Stress; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; Ventricular Remodeling | 2013 |
[Effect of Rhodiola Sacra on left ventricular remodeling and its mechanism in spontaneously hypertensive rats].
Topics: Aldosterone; Angiotensin II; Animals; Drugs, Chinese Herbal; Hypertension; Male; Rats; Rats, Inbred SHR; Renin-Angiotensin System; Rhodiola; Ventricular Remodeling | 2013 |
Smad7 inhibits angiotensin II-induced hypertensive cardiac remodelling.
Topics: Angiotensin II; Animals; Fibrosis; Hypertension; Male; Mice; MicroRNAs; Myocardium; NF-kappa B; Smad7 Protein; Sp1 Transcription Factor; Transforming Growth Factor beta; Ventricular Remodeling | 2013 |
N-acetyl-seryl-aspartyl-lysyl-proline reduces cardiac collagen cross-linking and inflammation in angiotensin II-induced hypertensive rats.
Topics: Amino Acid Oxidoreductases; Angiotensin II; Animals; Body Weight; Cardiomegaly; CD4-Positive T-Lymphocytes; Collagen; Extracellular Matrix; Hypertension; Inflammation; Lung; Male; NF-kappa B; Oligopeptides; Organ Size; Protein-Lysine 6-Oxidase; Rats; Rats, Inbred Lew; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Ventricular Function, Left; Ventricular Remodeling | 2014 |
Effects of traditional Chinese medicine Xin-Ji-Er-Kang formula on 2K1C hypertensive rats: role of oxidative stress and endothelial dysfunction.
Topics: Angiotensin II; Animals; Antioxidants; Aorta, Thoracic; Australia; Blood Pressure; Drugs, Chinese Herbal; Endothelium, Vascular; Heart; Hypertension; Magnoliopsida; Male; Malondialdehyde; Medicine, Chinese Traditional; Myocardium; Nitric Oxide; Oxidative Stress; Phytotherapy; Rats; Superoxide Dismutase; Vasodilation; Ventricular Remodeling | 2013 |
Effects of nicotine on cardiovascular remodeling in a mouse model of systemic hypertension.
Topics: Angiotensin II; Animals; Aorta, Thoracic; Disease Models, Animal; Hypertension; Infusion Pumps; Male; Mice; Mice, Inbred C57BL; Nicotine; Treatment Outcome; Ventricular Remodeling | 2013 |
Comparison of extracts from cooked and raw lentil in antagonizing angiotensin II-induced hypertension and cardiac hypertrophy.
Topics: Angiotensin II; Animals; Cardiomegaly; Hypertension; Lens Plant; Male; Myocytes, Cardiac; Oxidative Stress; Phytotherapy; Plant Extracts; Rats; Rats, Sprague-Dawley; Ventricular Remodeling | 2013 |
Enhanced expression of β3-adrenoceptors in cardiac myocytes attenuates neurohormone-induced hypertrophic remodeling through nitric oxide synthase.
Topics: Angiotensin II; Animals; Cells, Cultured; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Disease Models, Animal; Heart Ventricles; Humans; Hypertrophy; In Vitro Techniques; Isoproterenol; Male; Mice; Mice, Transgenic; Myocytes, Cardiac; Neurotransmitter Agents; Nitric Oxide Synthase; Receptors, Adrenergic, beta-3; Signal Transduction; Ventricular Remodeling | 2014 |
Toll-interacting protein (Tollip) negatively regulates pressure overload-induced ventricular hypertrophy in mice.
Topics: Angiotensin II; Animals; Cardiomegaly; Down-Regulation; Humans; Intracellular Signaling Peptides and Proteins; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocytes, Cardiac; Proto-Oncogene Proteins c-akt; Signal Transduction; Ventricular Remodeling | 2014 |
Hypertension is a conditional factor for the development of cardiac hypertrophy in type 2 diabetic mice.
Topics: AMP-Activated Protein Kinases; Angiotensin II; Animals; Blood Pressure; Cell Size; Diabetes Mellitus, Type 2; Dobutamine; Gene Expression; Glycation End Products, Advanced; Hypertension; Hypertrophy, Left Ventricular; Male; Mice; Myocardium; Myocytes, Cardiac; Time Factors; Ultrasonography; Ventricular Function, Left; Ventricular Remodeling | 2014 |
Antagonist of C5aR prevents cardiac remodeling in angiotensin II-induced hypertension.
Topics: Angiotensin II; Animals; Cardiomegaly; Cardiovascular Agents; Collagen; Connective Tissue Growth Factor; Cytokines; Disease Models, Animal; Fibrosis; Hypertension; Mice, Inbred C57BL; Myocardium; Peptides, Cyclic; Receptor, Anaphylatoxin C5a; RNA, Messenger; Time Factors; Transforming Growth Factor beta1; Ventricular Remodeling | 2014 |
Autocrine and paracrine function of Angiotensin 1-7 in tissue repair during hypertension.
Topics: Aldosterone; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Apoptosis; Autocrine Communication; Disease Models, Animal; Fibrosis; Hypertension; Kidney; Male; Myocardium; Paracrine Communication; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Signal Transduction; Ventricular Remodeling | 2014 |
Novel role of aminopeptidase-A in angiotensin-(1-7) metabolism post myocardial infarction.
Topics: Angiotensin I; Angiotensin II; Angiotensin III; Angiotensin-Converting Enzyme 2; Animals; Disease Models, Animal; Enzyme Inhibitors; Glutamyl Aminopeptidase; Kinetics; Male; Mice; Mice, Inbred C57BL; Myocardial Infarction; Myocardium; Peptide Fragments; Peptidyl-Dipeptidase A; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Substrate Specificity; Tandem Mass Spectrometry; Ventricular Remodeling | 2014 |
Puerarin inhibits angiotensin II-induced cardiac hypertrophy via the redox-sensitive ERK1/2, p38 and NF-κB pathways.
Topics: Administration, Oral; Angiotensin II; Animals; Antioxidants; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Gene Expression Regulation; Hypertrophy, Left Ventricular; Isoflavones; Male; Mice, Inbred C57BL; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Myocytes, Cardiac; NF-kappa B; Oxidation-Reduction; p38 Mitogen-Activated Protein Kinases; Protein Kinase Inhibitors; Reactive Oxygen Species; Signal Transduction; Tetrazoles; Ultrasonography; Valine; Valsartan; Ventricular Remodeling | 2014 |
Angiotensin II-induced cardiovascular load regulates cardiac remodeling and related gene expression in late-gestation fetal sheep.
Topics: Analysis of Variance; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Cardiovascular Physiological Phenomena; Cell Proliferation; Female; Fetus; Gene Expression Regulation, Developmental; Immunoblotting; Losartan; Microarray Analysis; Myocytes, Cardiac; Pregnancy; Sheep; Ventricular Remodeling | 2014 |
Phosphodiesterase 3A1 protects the heart against angiotensin II-induced cardiac remodeling through regulation of transforming growth factor-β expression.
Topics: Angiotensin II; Animals; Blotting, Western; Cardiomyopathy, Hypertrophic; Cyclic Nucleotide Phosphodiesterases, Type 3; Disease Models, Animal; Echocardiography; Heart Ventricles; Mice; Mice, Transgenic; Transforming Growth Factor beta; Vasoconstrictor Agents; Ventricular Remodeling | 2014 |
Connective tissue growth factor inhibition attenuates left ventricular remodeling and dysfunction in pressure overload-induced heart failure.
Topics: Angiotensin II; Animals; Antibodies, Monoclonal; Aorta, Thoracic; Collagen Type I; Connective Tissue Growth Factor; Constriction, Pathologic; Fibroblasts; Gene Expression; Heart; Heart Failure; Male; Matrix Metalloproteinase 2; Mice; Mice, Inbred C57BL; Myocardium; Myocytes, Cardiac; Plasminogen Activator Inhibitor 1; Pressure; Reverse Transcriptase Polymerase Chain Reaction; Ventricular Dysfunction, Left; Ventricular Remodeling; Weight-Bearing | 2014 |
Differential role of TIMP2 and TIMP3 in cardiac hypertrophy, fibrosis, and diastolic dysfunction.
Topics: Angiotensin II; Animals; Cardiomegaly; Cardiomyopathies; Fibrosis; Heart Failure, Diastolic; Hypertrophy, Left Ventricular; Mice, Inbred C57BL; Mice, Knockout; Myocardium; Tissue Inhibitor of Metalloproteinase-2; Tissue Inhibitor of Metalloproteinase-3; Ventricular Remodeling | 2014 |
Opposite effects of gene deficiency and pharmacological inhibition of soluble epoxide hydrolase on cardiac fibrosis.
Topics: Angiotensin II; Animals; Animals, Newborn; Arachidonic Acids; Biomarkers; Cardiomegaly; Chemokine CCL2; Disease Models, Animal; Epoxide Hydrolases; Fibrosis; Hypertension; Interleukin-6; Male; Metabolome; Mice; Mice, Inbred C57BL; Myocardium; Myofibroblasts; Ventricular Remodeling | 2014 |
Heterozygote loss of ACE2 is sufficient to increase the susceptibility to heart disease.
Topics: Adult; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Vessels; Echocardiography; Female; Genetic Predisposition to Disease; Heart; Heart Diseases; Humans; Kidney; Loss of Heterozygosity; Male; Mice; Mice, Knockout; Middle Aged; Mutation; Myocardium; Peptidyl-Dipeptidase A; Ventricular Remodeling | 2014 |
Complement 5a receptor mediates angiotensin II-induced cardiac inflammation and remodeling.
Topics: Angiotensin II; Animals; Cell Adhesion; Cell Movement; Cells, Cultured; Complement Activation; Humans; Hypertension; Macrophages; Mice; Mice, Inbred C57BL; Myocarditis; Receptor, Anaphylatoxin C5a; Receptors, Complement; Ventricular Remodeling | 2014 |
Angiotensin-converting enzyme 2 is a critical determinant of angiotensin II-induced loss of vascular smooth muscle cells and adverse vascular remodeling.
Topics: Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Aorta; Apoptosis; Cardiomyopathy, Dilated; Humans; Male; Matrix Metalloproteinases; Mice; Mice, Knockout; Middle Aged; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Oxidative Stress; Peptidyl-Dipeptidase A; Reactive Oxygen Species; Renin-Angiotensin System; Up-Regulation; Vascular Stiffness; Ventricular Remodeling | 2014 |
HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling.
Topics: Angiotensin II; Animals; Cardiomegaly; Disease Models, Animal; Fibrosis; Heart Failure; Histone Deacetylase 6; Histone Deacetylase Inhibitors; Histone Deacetylases; Hydroxamic Acids; Indoles; Male; Mice; Mice, Knockout; Muscle, Skeletal; Muscular Atrophy; Myocardium; Signal Transduction; Stroke Volume; Systole; Time Factors; Ventricular Function, Left; Ventricular Remodeling | 2014 |
Beneficial effects of houttuynin on ventricular remodeling induced by coronary artery ligation in rats.
Topics: Aldehydes; Aldosterone; Angiotensin I; Angiotensin II; Animals; Catalase; Collagen; Coronary Vessels; Endothelin-1; Glutathione Peroxidase; Ligation; Male; Myocardium; Rats, Sprague-Dawley; Ventricular Remodeling | 2014 |
Renal sympathetic denervation suppresses ventricular substrate remodelling in a canine high-rate pacing model.
Topics: Aldosterone; Angiotensin II; Animals; Arrhythmias, Cardiac; Cardiac Pacing, Artificial; Catheter Ablation; Disease Models, Animal; Disease Progression; Dogs; Female; Fibrosis; Heart Failure; Heart Ventricles; Kidney; Male; Natriuretic Peptide, Brain; Sympathectomy; Time Factors; Transforming Growth Factor beta; Ventricular Function, Left; Ventricular Pressure; Ventricular Remodeling | 2014 |
Differences in cell-type-specific responses to angiotensin II explain cardiac remodeling differences in C57BL/6 mouse substrains.
Topics: Angiotensin II; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Fibroblasts; Fibrosis; Galectin 3; Heart; Heart Ventricles; Hypertrophy, Left Ventricular; In Vitro Techniques; Macrophages; Male; Mice; Mice, Inbred C57BL; Myocardium; Osteopontin; Ventricular Remodeling | 2014 |
Qishenyiqi protects ligation-induced left ventricular remodeling by attenuating inflammation and fibrosis via STAT3 and NF-κB signaling pathway.
Topics: Angiotensin II; Animals; Captopril; Drugs, Chinese Herbal; Fibrosis; Heart Failure; Heart Ventricles; Hemodynamics; Inflammation; Interleukin-6; Ligation; Male; Matrix Metalloproteinases; NADPH Oxidases; NF-kappa B; Oxidative Stress; Protective Agents; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Signal Transduction; STAT3 Transcription Factor; Ventricular Remodeling | 2014 |
Baicalein attenuates angiotensin II-induced cardiac remodeling via inhibition of AKT/mTOR, ERK1/2, NF-κB, and calcineurin signaling pathways in mice.
Topics: Angiotensin II; Animals; Calcineurin Inhibitors; Cytokines; Disease Models, Animal; Enzyme Activation; Fibrosis; Flavanones; Gene Expression Regulation; Hypertension; Hypertrophy, Left Ventricular; Inflammation Mediators; Lipoxygenase Inhibitors; Male; Mice, Inbred C57BL; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Myocardium; NF-kappa B; Oxidative Stress; Phosphorylation; Proto-Oncogene Proteins c-akt; Signal Transduction; Time Factors; TOR Serine-Threonine Kinases; Ventricular Function, Left; Ventricular Remodeling | 2015 |
Effects of acute angiotensin II on ischemia reperfusion injury following myocardial infarction.
Topics: Angiotensin II; Animals; Animals, Newborn; Body Weight; Cell Survival; In Vitro Techniques; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Myocytes, Cardiac; Primary Cell Culture; Rats; Rats, Sprague-Dawley; Rats, Wistar; Ultrasonography; Ventricular Remodeling | 2015 |
Selective activation of angiotensin AT2 receptors attenuates progression of pulmonary hypertension and inhibits cardiopulmonary fibrosis.
Topics: Angiotensin II; Angiotensin II Type 2 Receptor Blockers; Animals; Cardiovascular Agents; Disease Models, Animal; Fibrosis; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Imidazoles; Lung; Male; Monocrotaline; Myocardium; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Pulmonary Fibrosis; Pyridines; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 2; Receptors, G-Protein-Coupled; Signal Transduction; Vascular Remodeling; Ventricular Dysfunction, Right; Ventricular Function, Right; Ventricular Remodeling | 2015 |
Tumor necrosis factor: a mechanistic link between angiotensin-II-induced cardiac inflammation and fibrosis.
Topics: Angiotensin II; Animals; Cell Migration Assays; Female; Fibroblasts; Fibrosis; Inflammation Mediators; Male; Mice, Inbred C57BL; Mice, Knockout; Myocardium; Myocytes, Cardiac; Receptors, Tumor Necrosis Factor, Type I; Tumor Necrosis Factor-alpha; Ventricular Remodeling | 2015 |
Activation of NADPH oxidase mediates increased endoplasmic reticulum stress and left ventricular remodeling after myocardial infarction in rabbits.
Topics: Acetophenones; Angiotensin II; Animals; Apoptosis; Blotting, Western; Cell Line; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Enzyme Activation; Enzyme Inhibitors; Gene Expression Regulation, Enzymologic; Heat-Shock Proteins; Microscopy, Confocal; Myocardial Infarction; Myocytes, Cardiac; NADPH Oxidases; Rabbits; Random Allocation; Rats; Reactive Oxygen Species; Reverse Transcriptase Polymerase Chain Reaction; RNA Interference; Survival Rate; Transcription Factor CHOP; Vasoconstrictor Agents; Ventricular Remodeling | 2015 |
Cardiomyocyte-specific expression of CYP2J2 prevents development of cardiac remodelling induced by angiotensin II.
Topics: 8,11,14-Eicosatrienoic Acid; Angiotensin II; Animals; Cells, Cultured; Coculture Techniques; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme System; Disease Models, Animal; Hypertrophy, Left Ventricular; Male; Mice, Inbred C57BL; Mice, Transgenic; Myocytes, Cardiac; Oxidative Stress; PPAR gamma; Rats; Signal Transduction; Transcription Factor RelA; Ventricular Function, Left; Ventricular Remodeling | 2015 |
Activation of peroxisome proliferator-activated receptor γ (PPARγ) through NF-κB/Brg1 and TGF-β1 pathways attenuates cardiac remodeling in pressure-overloaded rat hearts.
Topics: Angiotensin II; Animals; Aorta; DNA Helicases; Gene Expression Regulation; Humans; Myocytes, Cardiac; NF-kappa B; Nuclear Proteins; PPAR gamma; Pressure; Rats; Transcription Factors; Transforming Growth Factor beta; Ventricular Remodeling | 2015 |
Losartan treatment attenuates tumor-induced myocardial dysfunction.
Topics: Adenocarcinoma; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Calcium Signaling; Cardiotonic Agents; Cardiovascular Diseases; Cell Line, Tumor; Colonic Neoplasms; Cytokines; Drug Evaluation, Preclinical; Female; Glutathione; Losartan; Mice; Myocardium; Neoplasm Transplantation; Tumor Burden; Ventricular Remodeling | 2015 |
Nanoparticle-mediated RNA interference of angiotensinogen decreases blood pressure and improves myocardial remodeling in spontaneously hypertensive rats.
Topics: Angiotensin II; Angiotensinogen; Animals; Blood Pressure; Gene Knockdown Techniques; Genetic Therapy; Hypertension; Male; Myocardium; Nanoparticles; Organ Size; Rats, Inbred SHR; RNA Interference; RNA, Messenger; RNA, Small Interfering; Transfection; Ventricular Remodeling | 2015 |
A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling.
Topics: Angiotensin II; Angiotensinogen; Animals; Calcium; Calcium Channels; Calcium Signaling; Cardiomegaly; Hemodynamics; Homeostasis; Mice, Knockout; Myocytes, Cardiac; TRPC Cation Channels; Ventricular Remodeling | 2015 |
[Renal sympathetic denervation suppresses ventricular substrate remodeling in a canine high-rate pacing model].
Topics: Aldosterone; Angiotensin II; Animals; Cardiac Pacing, Artificial; Dogs; Enzyme-Linked Immunosorbent Assay; Heart Failure; Heart Ventricles; Hemodynamics; Models, Animal; Natriuretic Peptide, Brain; Sympathectomy; Ventricular Remodeling | 2015 |
Differential expression of the angiotensin-(1-12)/chymase axis in human atrial tissue.
Topics: Aged; Angiotensin I; Angiotensin II; Angiotensinogen; Atrial Fibrillation; Chymases; Echocardiography; Female; Gene Expression Regulation, Enzymologic; Heart Atria; Heart Valve Diseases; Humans; Male; Middle Aged; Myocardial Ischemia; RNA, Messenger; Up-Regulation; Ventricular Remodeling | 2015 |
A state of reversible compensated ventricular dysfunction precedes pathological remodelling in response to cardiomyocyte-specific activity of angiotensin II type-1 receptor in mice.
Topics: Angiotensin II; Animals; Cell Death; Fibrosis; Gene Expression Profiling; Gene Expression Regulation; Heart Function Tests; Humans; Hypertrophy, Left Ventricular; Macrophages; Male; Mice; Models, Cardiovascular; Myocytes, Cardiac; Receptor, Angiotensin, Type 1; Transgenes; Ventricular Dysfunction; Ventricular Remodeling | 2015 |
Activation of central PPAR-γ attenuates angiotensin II-induced hypertension.
Topics: Angiotensin II; Anilides; Animals; Blood Pressure; Brain; Disease Models, Animal; Hypertension; Infusions, Intraventricular; Infusions, Subcutaneous; Male; Pioglitazone; PPAR gamma; Rats; Rats, Sprague-Dawley; Renin-Angiotensin System; Sympathetic Nervous System; Thiazolidinediones; Ventricular Remodeling | 2015 |
The effect of angoroside C on pressure overload-induced ventricular remodeling in rats.
Topics: Angiotensin II; Animals; Aorta; Blood Pressure; Captopril; Collagen; Constriction, Pathologic; Coumaric Acids; Disease Models, Animal; Endothelin-1; Heart; Heart Rate; Hydroxyproline; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Myocytes, Cardiac; Rats; Rats, Sprague-Dawley; Scrophularia; Tissue Inhibitor of Metalloproteinase-1; Transforming Growth Factor beta1; Trisaccharides; Ventricular Remodeling | 2015 |
Profibrotic Role for Interleukin-4 in Cardiac Remodeling and Dysfunction.
Topics: Angiotensin II; Animals; Blood Pressure; Fibrosis; Heart; Hypertension; Interleukin-4; Macrophages; Mice; Mice, Knockout; Myocardium; Signal Transduction; Up-Regulation; Ventricular Remodeling | 2015 |
Oleanolic acid alleviated pressure overload-induced cardiac remodeling.
Topics: Angiotensin II; Animals; Anti-Inflammatory Agents; Antioxidants; Blood Glucose; Cardiomegaly; Diabetic Cardiomyopathies; Echocardiography; Fibrosis; Glucose; Hypertension; Male; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Oleanolic Acid; Proto-Oncogene Proteins c-akt; RNA, Messenger; Signal Transduction; TOR Serine-Threonine Kinases; Ventricular Remodeling | 2015 |
Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids.
Topics: 8,11,14-Eicosatrienoic Acid; Acetophenones; Aged; Angiotensin II; Animals; Cardio-Renal Syndrome; Cardiotonic Agents; Cell Line; Disease Models, Animal; Epoxide Hydrolases; Female; Fibrosis; Humans; Kidney Failure, Chronic; Male; Middle Aged; Myocytes, Cardiac; Rats, Sprague-Dawley; Stroke Volume; Up-Regulation; Ventricular Function, Left; Ventricular Remodeling | 2015 |
A Food-Derived Flavonoid Luteolin Protects against Angiotensin II-Induced Cardiac Remodeling.
Topics: Angiotensin II; Animals; Antioxidants; Atrial Natriuretic Factor; Connective Tissue Growth Factor; Diet; Fibroblasts; Fibrosis; Flavonoids; Food; Heart; Hydrogen Peroxide; Hypertrophy; Luteolin; Male; Myocardium; Oxidative Stress; Phosphorylation; Rats; Rats, Sprague-Dawley; Signal Transduction; Transforming Growth Factor beta1; Ventricular Remodeling | 2015 |
Tumor Necrosis Factor - Alpha Is Essential for Angiotensin II-Induced Ventricular Remodeling: Role for Oxidative Stress.
Topics: Angiotensin II; Animals; Blood Pressure; Cardiomegaly; Collagen Type I; Collagen Type III; Connective Tissue Growth Factor; Fibrosis; Heart; Hypertension; Male; MAP Kinase Signaling System; Mice; Myocardium; NADPH Oxidases; NF-kappa B; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Receptor, Angiotensin, Type 1; RNA, Messenger; Signal Transduction; Transforming Growth Factor beta; Tumor Necrosis Factor-alpha; Ventricular Remodeling | 2015 |
p63RhoGEF regulates auto- and paracrine signaling in cardiac fibroblasts.
Topics: Actin Cytoskeleton; Angiotensin II; Animals; Animals, Newborn; Aorta; Autocrine Communication; Connective Tissue Growth Factor; Constriction; Female; Fibroblasts; Gene Expression Regulation; Male; Mice; Mice, Inbred C57BL; Models, Cardiovascular; Myocardium; Paracrine Communication; Rats; Rats, Wistar; Rho Guanine Nucleotide Exchange Factors; rhoA GTP-Binding Protein; Serum Response Factor; Signal Transduction; trans-Golgi Network; Ventricular Remodeling | 2015 |
Tanshinone IIA inhibits angiotensin II induced extracellular matrix remodeling in human cardiac fibroblasts--Implications for treatment of pathologic cardiac remodeling.
Topics: Abietanes; Angiotensin II; Cells, Cultured; Dose-Response Relationship, Drug; Extracellular Matrix; Fibroblasts; Humans; Myocytes, Cardiac; Signal Transduction; Treatment Outcome; Ventricular Remodeling | 2016 |
Full Expression of Cardiomyopathy Is Partly Dependent on B-Cells: A Pathway That Involves Cytokine Activation, Immunoglobulin Deposition, and Activation of Apoptosis.
Topics: Angiotensin II; Animals; Apoptosis; B-Lymphocytes; Cardiomyopathies; Collagen; Cytokines; Disease Models, Animal; Fibroblasts; Fibrosis; Genetic Predisposition to Disease; Heart Failure; Hypertrophy, Left Ventricular; Immunoglobulin G; Magnetic Resonance Imaging; Male; Mice, Inbred C57BL; Mice, Knockout; Mice, Nude; Mice, SCID; Myocardium; NG-Nitroarginine Methyl Ester; Phenotype; Sialic Acid Binding Ig-like Lectin 2; Signal Transduction; Sodium Chloride; Stroke Volume; Time Factors; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Remodeling | 2016 |
Interleukin-10 deficiency aggravates angiotensin II-induced cardiac remodeling in mice.
Topics: Angiotensin II; Animals; Cardiomegaly; Collagen; Interleukin-10; Interleukin-6; Matrix Metalloproteinases; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; Natriuretic Peptide, Brain; Oncogene Protein v-akt; Ultrasonography; Ventricular Remodeling | 2016 |
Pleiotropic and puzzling effects of ATF3 in maladaptive cardiac remodeling.
Topics: Activating Transcription Factor 3; Angiotensin II; Animals; Cardiomegaly; Gene Expression Regulation; MAP Kinase Signaling System; Mice; Myocytes, Cardiac; Ventricular Remodeling | 2016 |
Angiotensin II Induced Cardiac Dysfunction on a Chip.
Topics: Angiotensin II; Animals; Gene Expression; Gene Expression Profiling; Models, Theoretical; Myocardial Contraction; Myocardium; Myocytes, Cardiac; Rats; Ventricular Remodeling | 2016 |
Long Non-Coding RNA Malat-1 Is Dispensable during Pressure Overload-Induced Cardiac Remodeling and Failure in Mice.
Topics: Adaptor Proteins, Signal Transducing; Angiotensin II; Animals; Aorta, Thoracic; Cardiomegaly; Constriction, Pathologic; Crosses, Genetic; Fetal Proteins; Gene Expression Regulation; Heart Failure; Heterozygote; Ligation; Mice; Mice, Inbred C57BL; Mice, Inbred CBA; Mice, Knockout; Pressure; Proteins; RNA Splicing; RNA, Long Noncoding; Ventricular Remodeling | 2016 |
Mast Cell Inhibition Attenuates Cardiac Remodeling and Diastolic Dysfunction in Middle-aged, Ovariectomized Fischer 344 × Brown Norway Rats.
Topics: Age Factors; Angiotensin II; Animals; Blood Pressure; Chymases; Cromolyn Sodium; Crosses, Genetic; Diastole; Disease Models, Animal; Estrogens; Female; Fibrosis; Heart Ventricles; Hypertrophy, Left Ventricular; Infusions, Subcutaneous; Mast Cells; Ovariectomy; Rats, Inbred BN; Rats, Inbred F344; Time Factors; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Pressure; Ventricular Remodeling | 2016 |
Angiotensin II Stimulation of Cardiac Hypertrophy and Functional Decompensation in Osteoprotegerin-Deficient Mice.
Topics: Angiotensin II; Animals; Disease Models, Animal; Follow-Up Studies; Heart Failure, Systolic; Hypertrophy, Left Ventricular; Male; Mice; Mice, Transgenic; Osteoprotegerin; Random Allocation; Rats; Rats, Wistar; Renin-Angiotensin System; Ventricular Remodeling | 2016 |
Fibulin-2 is essential for angiotensin II-induced myocardial fibrosis mediated by transforming growth factor (TGF)-β.
Topics: Angiotensin II; Animals; Calcium-Binding Proteins; Cardiomegaly; Disease Models, Animal; Extracellular Matrix Proteins; Fibrosis; Heart Failure; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Models, Cardiovascular; Myocardium; Signal Transduction; Transforming Growth Factor beta1; Ventricular Remodeling | 2016 |
Local Application of Leptin Antagonist Attenuates Angiotensin II-Induced Ascending Aortic Aneurysm and Cardiac Remodeling.
Topics: Adult; Aged; Aged, 80 and over; Angiotensin II; Animals; Aortic Aneurysm, Thoracic; Aortic Valve; Aortic Valve Stenosis; Cell Proliferation; Cells, Cultured; Female; Humans; Hypertrophy, Left Ventricular; Leptin; Male; Mice; Mice, Knockout, ApoE; Middle Aged; Vascular Stiffness; Vasoconstrictor Agents; Ventricular Remodeling; Young Adult | 2016 |
The effects of different angiotensin II type 1 receptor blockers on the regulation of the ACE-AngII-AT1 and ACE2-Ang(1-7)-Mas axes in pressure overload-induced cardiac remodeling in male mice.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Blood Pressure; Cardiomegaly; Disease Models, Animal; Echocardiography; Hemodynamics; Hypertension; Male; Mice; Mice, Knockout; Myocardium; Myocytes, Cardiac; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptor, Angiotensin, Type 1; Receptors, G-Protein-Coupled; RNA, Small Interfering; Signal Transduction; Ventricular Remodeling | 2016 |
A dipeptidyl peptidase-4 inhibitor ameliorates hypertensive cardiac remodeling via angiotensin-II/sodium-proton pump exchanger-1 axis.
Topics: Angiotensin II; Animals; Blood Pressure; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Echocardiography; Heart Failure; Hypertension; Male; Myocytes, Cardiac; Pyrazoles; Rats; Rats, Inbred SHR; Signal Transduction; Sodium-Hydrogen Exchangers; Thiazolidines; Vasodilation; Ventricular Remodeling | 2016 |
Vascular ADAM17 as a Novel Therapeutic Target in Mediating Cardiovascular Hypertrophy and Perivascular Fibrosis Induced by Angiotensin II.
Topics: ADAM17 Protein; Angiotensin II; Animals; Cardiomegaly; Cells, Cultured; Disease Models, Animal; ErbB Receptors; Fibrosis; Humans; Hypertension; Male; Mice; Mice, Inbred C57BL; Molecular Targeted Therapy; Myocytes, Cardiac; Random Allocation; Renin-Angiotensin System; Sensitivity and Specificity; Signal Transduction; Vascular Remodeling; Ventricular Remodeling | 2016 |
Novel Protective Role for Ubiquitin-Specific Protease 18 in Pathological Cardiac Remodeling.
Topics: Analysis of Variance; Angiotensin II; Animals; Cardiomegaly; Cells, Cultured; Disease Models, Animal; Gene Expression Regulation; Heart Failure; Mice; Mice, Knockout; Myocytes, Cardiac; Random Allocation; Role; Sensitivity and Specificity; Signal Transduction; Ubiquitin Thiolesterase; Ventricular Remodeling | 2016 |
Human paraoxonase gene cluster overexpression alleviates angiotensin II-induced cardiac hypertrophy in mice.
Topics: Angiotensin II; Animals; Aryldialkylphosphatase; Blood Pressure; Blotting, Western; Cardiomegaly; Echocardiography; Fibrosis; Gene Expression Regulation, Enzymologic; Heart; Humans; Male; Matrix Metalloproteinases; Mice, Inbred C57BL; Mice, Transgenic; Multigene Family; Myocardium; Reverse Transcriptase Polymerase Chain Reaction; Tissue Inhibitor of Metalloproteinases; Ventricular Remodeling | 2016 |
Development of nonfibrotic left ventricular hypertrophy in an ANG II-induced chronic ovine hypertension model.
Topics: Angiotensin II; Animals; Autopsy; Fibrosis; Heart; Heart Ventricles; Hypertension; Hypertrophy, Left Ventricular; Magnetic Resonance Imaging; Models, Animal; Risk Factors; Sheep; Vasoconstrictor Agents; Ventricular Remodeling | 2016 |
Mnk1 (Mitogen-Activated Protein Kinase-Interacting Kinase 1) Deficiency Aggravates Cardiac Remodeling in Mice.
Topics: Analysis of Variance; Angiotensin II; Animals; Biomarkers; Cardiomegaly; Cells, Cultured; Disease Models, Animal; Mice; Mice, Knockout; Mitogen-Activated Protein Kinases; Myocytes, Cardiac; Protein Serine-Threonine Kinases; Random Allocation; Signal Transduction; Ventricular Remodeling | 2016 |
Paradoxical Sleep Deprivation Causes Cardiac Dysfunction and the Impairment Is Attenuated by Resistance Training.
Topics: Angiotensin II; Animals; Corticosterone; Echocardiography, Doppler; Heart Rate; Heart Ventricles; Hemodynamics; Hypertrophy, Left Ventricular; Insulin-Like Growth Factor I; Male; Physical Conditioning, Animal; Rats; Rats, Wistar; Sleep Deprivation; Testosterone; Ventricular Remodeling | 2016 |
MD2 mediates angiotensin II-induced cardiac inflammation and remodeling via directly binding to Ang II and activating TLR4/NF-κB signaling pathway.
Topics: Angiotensin II; Animals; Blotting, Western; Enzyme-Linked Immunosorbent Assay; Flow Cytometry; Fluorescent Antibody Technique; Immunoprecipitation; Lymphocyte Antigen 96; Mice; Mice, Inbred C57BL; Mice, Knockout; Microscopy, Electron, Transmission; Molecular Docking Simulation; Myocarditis; NF-kappa B; Rats; Real-Time Polymerase Chain Reaction; Signal Transduction; Surface Plasmon Resonance; Toll-Like Receptor 4; Ventricular Remodeling | 2017 |
Hydrochlorothiazide modulates ischemic heart failure-induced cardiac remodeling via inhibiting angiotensin II type 1 receptor pathway in rats.
Topics: Aldosterone; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Animals, Newborn; Cells, Cultured; Disease Models, Animal; Diuretics; Fibroblasts; Fibrosis; Furosemide; Heart Failure; Heart Ventricles; Hydrochlorothiazide; Male; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Recovery of Function; Signal Transduction; Smad2 Protein; Stroke Volume; Transforming Growth Factor beta1; Valsartan; Ventricular Function, Left; Ventricular Remodeling | 2017 |
Novel Protective Role of Myeloid Differentiation 1 in Pathological Cardiac Remodelling.
Topics: Angiotensin II; Animals; Antigens, Surface; Cardiomegaly; Cells, Cultured; Humans; Male; MAP Kinase Signaling System; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Myocytes, Cardiac; NF-kappa B; Nitriles; Sulfones; Ventricular Remodeling | 2017 |
Icariin prevents hypertension-induced cardiomyocyte apoptosis through the mitochondrial apoptotic pathway.
Topics: Angiotensin II; Animals; Apoptosis; Apoptosis Regulatory Proteins; Blood Pressure; Cell Line; Flavonoids; Mitochondria, Heart; Myocytes, Cardiac; Rats, Inbred SHR; Rats, Inbred WKY; Signal Transduction; Ventricular Remodeling | 2017 |
Angiotensin II dependent cardiac remodeling in the eel Anguilla anguilla involves the NOS/NO system.
Topics: Angiotensin II; Anguilla; Animals; Collagen; Heart; Heart Ventricles; HSP90 Heat-Shock Proteins; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Nitric Oxide; Nitric Oxide Synthase; Nitrites; Proto-Oncogene Proteins c-akt; Receptors, Angiotensin; Ventricular Remodeling | 2017 |
Synthesis of the novel PARP-1 inhibitor AG-690/11026014 and its protective effects on angiotensin II-induced mouse cardiac remodeling.
Topics: Angiotensin II; Animals; Cardiomegaly; Cardiotonic Agents; Fibrosis; Male; Mice, Inbred C57BL; Myocytes, Cardiac; Poly (ADP-Ribose) Polymerase-1; Sirtuin 1; Thioglycolates; Ventricular Remodeling; Xanthines | 2017 |
Cardiac Fibroblast-Specific Activating Transcription Factor 3 Protects Against Heart Failure by Suppressing MAP2K3-p38 Signaling.
Topics: Acetylation; Activating Transcription Factor 3; Angiotensin II; Animals; Binding Sites; Cells, Cultured; Disease Models, Animal; Fibroblasts; Fibrosis; Genetic Predisposition to Disease; Heart Failure; Histone Deacetylase 1; Histones; Humans; Hypertension; Hypertrophy, Left Ventricular; Male; MAP Kinase Kinase 3; Mice, Knockout; Myocardium; p38 Mitogen-Activated Protein Kinases; Phenotype; Promoter Regions, Genetic; Protein Kinase Inhibitors; Signal Transduction; Time Factors; Transforming Growth Factor beta; Ventricular Function, Left; Ventricular Remodeling | 2017 |
Overexpressed connective tissue growth factor in cardiomyocytes attenuates left ventricular remodeling induced by angiotensin II perfusion.
Topics: Actins; Angiotensin II; Animals; Blood Pressure; Cardiomegaly; Collagen Type I; Connective Tissue Growth Factor; Echocardiography; Fibrosis; Heart; Heart Ventricles; Hypertension; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Myocardium; Myocytes, Cardiac; Reverse Transcriptase Polymerase Chain Reaction; Transforming Growth Factor beta; Vasoconstrictor Agents; Ventricular Remodeling | 2017 |
Emerin plays a crucial role in nuclear invagination and in the nuclear calcium transient.
Topics: Active Transport, Cell Nucleus; Angiotensin II; Aniline Compounds; Animals; Atrial Remodeling; Calcium; Cardiomegaly; Cytoplasm; Disease Models, Animal; Endothelin-1; Fluorescent Dyes; Gene Expression Regulation; Heterocyclic Compounds, 3-Ring; Humans; Membrane Proteins; Muscular Dystrophy, Emery-Dreifuss; Myocardium; Myocytes, Cardiac; Nuclear Envelope; Nuclear Proteins; Phenylephrine; Primary Cell Culture; Rats; Rats, Sprague-Dawley; RNA, Small Interfering; Ventricular Remodeling; Xanthenes | 2017 |
Selective type 1 angiotensin II receptor blockade attenuates oxidative stress and regulates angiotensin II receptors in the canine failing heart.
Topics: Aldehydes; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Benzimidazoles; Biphenyl Compounds; Dogs; Echocardiography; Heart Failure; Hemodynamics; Male; Oxidative Stress; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Tetrazoles; Ventricular Dysfunction, Left; Ventricular Remodeling | 2008 |
Modulation of angiotensin II-mediated hypertension and cardiac remodeling by lectin-like oxidized low-density lipoprotein receptor-1 deletion.
Topics: Angiotensin II; Animals; Blood Pressure; Cells, Cultured; Fibroblasts; Gene Deletion; Gene Expression; Hypertension; Mice; Mice, Knockout; Myocardium; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Norepinephrine; Oxidative Stress; Receptor, Angiotensin, Type 1; Scavenger Receptors, Class E; Vasoconstrictor Agents; Ventricular Remodeling | 2008 |
Metallothionein suppresses angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart.
Topics: Angiotensin II; Animals; Apoptosis; Cardiomyopathies; Diabetes Mellitus, Experimental; Diabetic Angiopathies; Fibrosis; Hypertrophy; Metallothionein; Mice; Mice, Transgenic; Myocardium; Myocytes, Cardiac; NADP; Oxidative Stress; Ventricular Remodeling | 2008 |
Angiotensin II type-1 receptor activation in the adult heart causes blood pressure-independent hypertrophy and cardiac dysfunction.
Topics: Age Factors; Angiotensin II; Animals; Blood Pressure; Cardiomegaly; Fibrosis; Heart Rate; Humans; Hypertension; Infusion Pumps, Implantable; Male; Mice; Mice, Inbred C57BL; Mice, Inbred CBA; Mice, Transgenic; Mutation; Myocytes, Cardiac; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Stroke Volume; Time Factors; Ventricular Remodeling | 2009 |
Expression of renin-angiotensin system and peroxisome proliferator-activated receptors in alcoholic cardiomyopathy.
Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensinogen; Animals; Biphenyl Compounds; Cardiomyopathy, Alcoholic; Disease Models, Animal; Flavonoids; Irbesartan; Male; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Myocardium; Peptidyl-Dipeptidase A; PPAR alpha; PPAR gamma; Rats; Rats, Wistar; Renin; Renin-Angiotensin System; Tetrazoles; Ventricular Remodeling | 2008 |
Cardioprotective effects of granulocyte colony-stimulating factor in angiotensin II-induced cardiac remodelling.
Topics: Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Disease Models, Animal; Fibrosis; Granulocyte Colony-Stimulating Factor; Heart Rate; Humans; Hypertension; Hypertrophy, Left Ventricular; Infusion Pumps, Implantable; Injections, Subcutaneous; Male; Mice; Mice, Inbred C57BL; Myocardium; Osteopontin; Peptidyl-Dipeptidase A; Phosphorylation; Recombinant Proteins; Ribosomal Protein S6 Kinases, 70-kDa; RNA, Messenger; Ventricular Function, Left; Ventricular Remodeling | 2009 |
Angiotensin(1-7) blunts hypertensive cardiac remodeling by a direct effect on the heart.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Blood Pressure; Cardiomegaly; Crosses, Genetic; Heart; Hypertension; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Myocardium; Peptide Fragments; Peptidyl-Dipeptidase A; Renin-Angiotensin System; Ventricular Remodeling | 2008 |
Cross-talk between mineralocorticoid and angiotensin II signaling for cardiac remodeling.
Topics: Angiotensin II; Animals; Blood Pressure; Echocardiography; Female; Heart Failure; Humans; Hypertension; Male; Mice; Mice, Transgenic; Myocytes, Cardiac; Oxidative Stress; Pregnancy; Receptor Cross-Talk; Receptor, Angiotensin, Type 1; Receptors, Mineralocorticoid; Signal Transduction; Vasoconstrictor Agents; Ventricular Remodeling | 2008 |
Effect of long-term B-type natriuretic peptide treatment on left ventricular remodeling and function after myocardial infarction in rats.
Topics: Angiotensin II; Animals; Collagen; Male; Myocardial Infarction; Natriuretic Agents; Natriuretic Peptide, Brain; Rats; Rats, Sprague-Dawley; RNA, Messenger; Smad2 Protein; Time Factors; Transforming Growth Factor beta1; Treatment Outcome; Ventricular Remodeling | 2009 |
Expression and tissue localization of beta-catenin, alpha-actinin and chondroitin sulfate proteoglycan 6 is modulated during rat and human left ventricular hypertrophy.
Topics: Actinin; Angiotensin II; Animals; beta Catenin; Cell Cycle Proteins; Cells, Cultured; Chondroitin Sulfate Proteoglycans; Chromosomal Proteins, Non-Histone; Disease Models, Animal; Extracellular Matrix; Gene Expression Profiling; Humans; Hypertrophy, Left Ventricular; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 7; Myocardium; Oligonucleotide Array Sequence Analysis; Osteonectin; Rats; Rats, Sprague-Dawley; Ventricular Remodeling; Versicans | 2009 |
Air pollution and cardiac remodeling: a role for RhoA/Rho-kinase.
Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Angiotensin II; Animals; Atmosphere Exposure Chambers; Blood Pressure; Cardiomegaly; Collagen; Disease Models, Animal; Guanine Nucleotide Exchange Factors; Hypertension; Infusion Pumps; Inhalation Exposure; Injections, Intraperitoneal; Male; Matrix Metalloproteinases, Secreted; Mice; Mice, Inbred C57BL; Myocardium; Particulate Matter; Protein Kinase Inhibitors; rho GTP-Binding Proteins; Rho Guanine Nucleotide Exchange Factors; rho-Associated Kinases; rhoA GTP-Binding Protein; Signal Transduction; Vasoconstriction; Vasodilation; Ventricular Remodeling | 2009 |
Noninvasive imaging of angiotensin receptors after myocardial infarction.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Binding Sites; Biomarkers; Disease Models, Animal; Feasibility Studies; Fluorescent Dyes; Heart Failure; Losartan; Male; Mice; Microscopy, Confocal; Microscopy, Fluorescence; Microscopy, Fluorescence, Multiphoton; Microscopy, Video; Myocardial Infarction; Myocardium; Radiopharmaceuticals; Receptors, Angiotensin; Technetium; Time Factors; Tomography, Emission-Computed, Single-Photon; Ventricular Remodeling; X-Ray Microtomography | 2008 |
Postmyocardial infarction remodeling and coronary reserve: effects of ivabradine and beta blockade therapy.
Topics: Adrenergic beta-Antagonists; Angiotensin II; Animals; Atenolol; Benzazepines; Bradykinin; Cardiotonic Agents; Collagen; Coronary Circulation; Electrocardiography; Heart Rate; Immunohistochemistry; Intercellular Signaling Peptides and Proteins; Ivabradine; Male; Myocardial Infarction; Neovascularization, Physiologic; Organ Size; Perfusion; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Ventricular Remodeling | 2009 |
Effect of early versus late AT(1) receptor blockade with losartan on postmyocardial infarction ventricular remodeling in rabbits.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Blood Pressure; Body Weight; Collagen; Losartan; Lymphocytes; Macrophages; Muscle Cells; Myocardial Infarction; Myocardium; Neutrophil Infiltration; Organ Size; Rabbits; Receptor, Angiotensin, Type 1; Survival Analysis; Ventricular Remodeling | 2009 |
Angiotensin II and tumour necrosis factor alpha as mediators of ATP-dependent potassium channel remodelling in post-infarction heart failure.
Topics: Action Potentials; Angiotensin II; Animals; ATP-Binding Cassette Transporters; Cells, Cultured; Diazoxide; Forkhead Transcription Factors; Gene Expression; Heart Failure; KATP Channels; Myocardial Infarction; Myocytes, Cardiac; Patch-Clamp Techniques; Potassium Channels, Inwardly Rectifying; Rats; Receptors, Drug; RNA, Messenger; Sulfonylurea Receptors; Tumor Necrosis Factor-alpha; Ventricular Remodeling | 2009 |
Chymase plays an important role in left ventricular remodeling induced by intermittent hypoxia in mice.
Topics: Acetamides; Aldehydes; Angiotensin II; Animals; Body Weight; Chymases; Gene Expression; Hemodynamics; Hypoxia; Immunohistochemistry; Interleukin-6; Lipid Peroxides; Male; Mice; Mice, Inbred C57BL; Myocardium; Myocytes, Cardiac; NADP; Organ Size; Pyrimidines; Reverse Transcriptase Polymerase Chain Reaction; Superoxides; Transforming Growth Factor beta; Tumor Necrosis Factor-alpha; Ventricular Remodeling | 2009 |
NF-kappaB activation is required for adaptive cardiac hypertrophy.
Topics: Angiotensin II; Animals; Apoptosis; Cardiomegaly; Disease Models, Animal; Female; Fibrosis; I-kappa B Proteins; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mutation; Myocardium; Myocytes, Cardiac; Myosin Heavy Chains; NF-kappa B; NF-KappaB Inhibitor alpha; Receptor, Angiotensin, Type 1; Sex Characteristics; Signal Transduction; Ventricular Remodeling | 2009 |
Immunology. Dispensable but not irrelevant.
Topics: Angiotensin II; Animals; Antigens, Ly; Mice; Monocytes; Myocardial Infarction; Myocardium; Receptors, CCR2; Receptors, Chemokine; Signal Transduction; Spleen; Ventricular Remodeling | 2009 |
ACE I/D polymorphism associated with abnormal atrial and atrioventricular conduction in lone atrial fibrillation and structural heart disease: implications for electrical remodeling.
Topics: Adult; Angiotensin II; Atrial Fibrillation; Atrioventricular Node; Case-Control Studies; Cohort Studies; Female; Heart Atria; Heart Block; Heart Diseases; Humans; Linear Models; Male; Middle Aged; Multivariate Analysis; Peptidyl-Dipeptidase A; Polymorphism, Genetic; Ventricular Remodeling | 2009 |
Exaggerated blood pressure variability superimposed on hypertension aggravates cardiac remodeling in rats via angiotensin II system-mediated chronic inflammation.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensinogen; Animals; Benzimidazoles; Biphenyl Compounds; Blood Pressure; Chemokine CCL2; Chronic Disease; Disease Models, Animal; Heart Diseases; Heart Ventricles; Hypertension; Hypertrophy; Inflammation; Macrophages; Male; Myocytes, Cardiac; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Tetrazoles; Transforming Growth Factor beta; Ventricular Remodeling | 2009 |
Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction.
Topics: Adaptation, Physiological; Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Biphenyl Compounds; Disease Models, Animal; Enzyme Activation; Inflammation Mediators; Irbesartan; Male; Matrix Metalloproteinases; Mice; Mice, Inbred C57BL; Mice, Knockout; Mitogen-Activated Protein Kinases; Myocardial Infarction; Myocardium; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Phosphorylation; Receptor, Angiotensin, Type 1; RNA, Messenger; Superoxides; Tetrazoles; Time Factors; Ultrasonography; Ventricular Remodeling | 2009 |
Decreased cardiac Ang-(1-7) is associated with salt-induced cardiac remodeling and dysfunction.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Male; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Inbred SHR; Receptors, G-Protein-Coupled; Renin; RNA, Messenger; Sodium Chloride, Dietary; Ventricular Dysfunction, Left; Ventricular Remodeling | 2010 |
Sympathetic nervous system modulation of inflammation and remodeling in the hypertensive heart.
Topics: Analysis of Variance; Angiotensin II; Animals; Cardiomegaly; Cells, Cultured; Cytokines; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Hypertension; Inflammation Mediators; Male; Myocytes, Cardiac; Probability; Random Allocation; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Substance P; Sympathectomy; Sympathetic Nervous System; Ventricular Remodeling | 2010 |
Angiotensin-(1-7) improves cardiac remodeling and inhibits growth-promoting pathways in the heart of fructose-fed rats.
Topics: Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Blood Pressure; Dietary Carbohydrates; Disease Models, Animal; Fructose; Hypertension; Hypertrophy, Left Ventricular; Insulin; Insulin Resistance; Male; Peptide Fragments; Protein Tyrosine Phosphatase, Non-Receptor Type 6; Rats; Rats, Sprague-Dawley; Ventricular Remodeling | 2010 |
Cardiac phenotype and angiotensin II levels in AT1a, AT1b, and AT2 receptor single, double, and triple knockouts.
Topics: Angiotensin II; Animals; Atrophy; Coronary Circulation; Fibrosis; Genotype; Kidney; Male; Mice; Mice, Knockout; Myocardium; Natriuretic Peptide, Brain; Perfusion; Phenotype; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Ventricular Function, Left; Ventricular Pressure; Ventricular Remodeling | 2010 |
Involvement of NADPH oxidase in age-associated cardiac remodeling.
Topics: Aging; Angiotensin II; Animals; Crosses, Genetic; Cytokines; In Situ Hybridization; Male; NADPH Oxidases; Oxidative Stress; Platelet Endothelial Cell Adhesion Molecule-1; Protein Isoforms; Rats; Rats, Inbred F344; Time Factors; Ventricular Remodeling | 2010 |
Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 during cardiac remodelling in rats.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Apoptosis Regulatory Proteins; Cells, Cultured; Cytokine TWEAK; Gene Expression; Inflammation; Losartan; Male; Membrane Proteins; Myocardial Infarction; Myocytes, Cardiac; p38 Mitogen-Activated Protein Kinases; Rats; Rats, Sprague-Dawley; Receptors, Tumor Necrosis Factor; RNA, Messenger; Signal Transduction; Stress, Mechanical; Tumor Necrosis Factors; TWEAK Receptor; Ventricular Remodeling | 2010 |
Modulation of angiotensin II-mediated cardiac remodeling by the MEF2A target gene Xirp2.
Topics: Angiotensin II; Animals; Apoptosis; Binding Sites; Cardiomegaly; Cytoskeletal Proteins; Disease Models, Animal; DNA-Binding Proteins; Fibrosis; Gene Expression Regulation; Infusion Pumps, Implantable; Infusions, Subcutaneous; LIM Domain Proteins; MEF2 Transcription Factors; Mice; Mice, Transgenic; Myocardium; Myogenic Regulatory Factors; Myosin Heavy Chains; Nuclear Proteins; Promoter Regions, Genetic; Signal Transduction; Transcriptional Activation; Ventricular Myosins; Ventricular Remodeling | 2010 |
C-reactive protein promotes cardiac fibrosis and inflammation in angiotensin II-induced hypertensive cardiac disease.
Topics: Analysis of Variance; Angiotensin II; Animals; Blood Pressure; C-Reactive Protein; Cells, Cultured; Enzyme-Linked Immunosorbent Assay; Fibrosis; Heart; Heart Rate; Humans; Hypertension; Immunohistochemistry; Inflammation; Interleukin-1beta; Mice; Myocardium; Receptor, Angiotensin, Type 1; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Smad Proteins; Tumor Necrosis Factor-alpha; Up-Regulation; Ventricular Remodeling | 2010 |
A novel p38 MAPK target dyxin is rapidly induced by mechanical load in the heart.
Topics: Adenoviridae; Angiotensin II; Animals; Carrier Proteins; Co-Repressor Proteins; Gene Transfer Techniques; Genetic Vectors; Heart; Heart Ventricles; Hypertension; In Vitro Techniques; LIM Domain Proteins; Male; Myocardial Infarction; Myocardium; Myocytes, Cardiac; p38 Mitogen-Activated Protein Kinases; Rats; Rats, Sprague-Dawley; RNA, Messenger; Stress, Mechanical; Vasoconstrictor Agents; Ventricular Remodeling | 2010 |
Smad3 mediates cardiac inflammation and fibrosis in angiotensin II-induced hypertensive cardiac remodeling.
Topics: Angiotensin II; Animals; Chemokine CCL2; Echocardiography; Gene Deletion; Hypertension; Inflammation; Mice; Mice, Inbred C57BL; Mice, Knockout; NF-kappa B; Smad3 Protein; Stroke Volume; Tumor Necrosis Factor-alpha; Ventricular Remodeling | 2010 |
Growth differentiation factor 15 acts anti-apoptotic and pro-hypertrophic in adult cardiomyocytes.
Topics: Age Factors; Angiotensin II; Animals; Apoptosis; Cardiomegaly; Cells, Cultured; Extracellular Signal-Regulated MAP Kinases; Growth Differentiation Factor 15; Male; Myocytes, Cardiac; Nitric Oxide Donors; Oligonucleotides; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Kinase Inhibitors; Rats; Rats, Wistar; Signal Transduction; Smad1 Protein; Time Factors; Transforming Growth Factor beta1; Ventricular Remodeling | 2010 |
Determinants of CREB degradation and KChIP2 gene transcription in cardiac memory.
Topics: Action Potentials; Angiotensin II; Animals; Arrhythmias, Cardiac; Blotting, Western; Cardiac Pacing, Artificial; Cells, Cultured; Cyclic AMP Response Element-Binding Protein; Dogs; Heart Conduction System; Ion Channels; Kv Channel-Interacting Proteins; Lipid Peroxidation; Male; Models, Animal; Models, Cardiovascular; Myocardium; Myocytes, Cardiac; Oxidative Stress; Proteasome Endopeptidase Complex; Reactive Oxygen Species; Ubiquitin; Ubiquitination; Ventricular Function, Left; Ventricular Remodeling | 2010 |
Effects of Tongguan Capsule on post-myocardial infarction ventricular remodeling and cardiac function in rats.
Topics: Angiotensin II; Animals; Antihypertensive Agents; Capsules; Captopril; Drug Evaluation, Preclinical; Drugs, Chinese Herbal; Echocardiography, Doppler; Heart; Male; Myocardial Infarction; Random Allocation; Rats; Rats, Sprague-Dawley; Ventricular Function, Left; Ventricular Remodeling | 2010 |
ACE2 overexpression ameliorates left ventricular remodeling and dysfunction in a rat model of myocardial infarction.
Topics: Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Disease Models, Animal; Fibrosis; Gene Expression; Male; Myocardial Infarction; Myocardium; Peptidyl-Dipeptidase A; Random Allocation; Rats; Rats, Inbred WKY; Ventricular Remodeling | 2010 |
Intracellular or extracellular heat shock protein 70 differentially regulates cardiac remodelling in pressure overload mice.
Topics: Angiotensin II; Animals; Antibodies; Benzhydryl Compounds; Blood Pressure; Cardiomegaly; Chemokine CCL2; Disease Models, Animal; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Fibrosis; HSP70 Heat-Shock Proteins; Hypertension; Male; Mice; Mice, Inbred ICR; Myocardium; p38 Mitogen-Activated Protein Kinases; Protein Transport; Pyrrolidinones; Signal Transduction; Time Factors; Toll-Like Receptor 4; Transcription, Genetic; Transforming Growth Factor beta1; Ventricular Remodeling | 2010 |
Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction.
Topics: Amides; Angiotensin II; Animals; Base Sequence; Cell Transdifferentiation; Chlorocebus aethiops; Collagen; Collagen Type I; COS Cells; Disease Models, Animal; Extracellular Matrix Proteins; Fibroblasts; Fibrosis; Male; Mice; Mice, Knockout; Molecular Sequence Data; Myocardial Infarction; Myocardium; Myocytes, Smooth Muscle; Phenotype; Promoter Regions, Genetic; Protein Kinase Inhibitors; Pyridines; rho-Associated Kinases; Time Factors; Trans-Activators; Transcription, Genetic; Transfection; Transforming Growth Factor beta1; Ventricular Remodeling | 2010 |
Effects of polydatin on attenuating ventricular remodeling in isoproterenol-induced mouse and pressure-overload rat models.
Topics: Aldosterone; Angiotensin II; Animals; Aorta, Abdominal; Blood Pressure; Cardiovascular Agents; Collagen; Cyclic AMP; Drugs, Chinese Herbal; Endothelin-1; Fallopia japonica; Glucosides; Heart; Hypertrophy, Left Ventricular; Isoproterenol; Male; Mice; Myocytes, Cardiac; Organ Size; Phytotherapy; Rats; Rats, Sprague-Dawley; Renin-Angiotensin System; Stilbenes; Tumor Necrosis Factor-alpha; Ventricular Remodeling | 2010 |
Effect of sodium houttuyfonate on inhibiting ventricular remodeling induced by abdominal aortic banding in rats.
Topics: Aldosterone; Alkanes; Angiotensin II; Animals; Aorta, Abdominal; Blood Pressure; Collagen; Constriction; Heart Failure; Male; Myocytes, Cardiac; Rats; Rats, Sprague-Dawley; Renin-Angiotensin System; Sulfites; Tumor Necrosis Factor-alpha; Ventricular Function, Left; Ventricular Remodeling | 2010 |
Heparin cofactor II protects against angiotensin II-induced cardiac remodeling via attenuation of oxidative stress in mice.
Topics: Analysis of Variance; Angiotensin II; Animals; Atrial Natriuretic Factor; Cardiomegaly; Echocardiography; Fibrosis; Heart Atria; Heparin Cofactor II; Mice; Mice, Transgenic; Myocardium; Natriuretic Peptide, Brain; Oxidative Stress; Transforming Growth Factor beta1; Ventricular Remodeling | 2010 |
Cardiac angiotensin II: does it have a function?
Topics: Angiotensin II; Animals; Disease Models, Animal; Heart; Hypertension; Mice; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Ventricular Remodeling | 2010 |
Collagen XV is necessary for modeling of the extracellular matrix and its deficiency predisposes to cardiomyopathy.
Topics: Age Factors; Aging; Angiotensin II; Animals; Atrial Natriuretic Factor; Cardiomyopathies; Collagen; Coronary Circulation; Disease Models, Animal; Echocardiography; Elasticity; Enzyme Inhibitors; Extracellular Matrix; Female; Gene Expression Profiling; Gene Expression Regulation; Genotype; Heart Ventricles; Hemodynamics; Hypertension; Male; Mice; Mice, 129 Strain; Mice, Inbred C57BL; Mice, Knockout; Microcirculation; Microscopy, Electron; Microscopy, Video; Myocardium; Natriuretic Peptide, Brain; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Phenotype; Polymerase Chain Reaction; RNA, Messenger; Telemetry; Ventricular Remodeling | 2010 |
Beneficial effects of olmesartan, an angiotensin II receptor type 1 antagonist, in rats with dilated cardiomyopathy.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Cardiomyopathy, Dilated; Chemokine CCL2; Imidazoles; Interleukin-1beta; Interleukin-6; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Myocarditis; Myocardium; Myosins; Rats; Rats, Inbred Lew; RNA, Messenger; Tetrazoles; Ventricular Remodeling | 2010 |
Genistein prevents myocardial hypertrophy in 2-kidney 1-clip renal hypertensive rats by restoring eNOS pathway.
Topics: Angiotensin II; Animals; Collagen Type I; Cyclic GMP; Gene Expression Regulation; Genistein; Hypertension, Renovascular; Hypertrophy, Left Ventricular; Male; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Phosphorylation; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 2; Ventricular Remodeling | 2010 |
Regional myocardial function and response to acute afterload increase in chronically anemic fetal sheep: evaluation by two-dimensional strain echocardiography.
Topics: Anemia; Angiotensin II; Animals; Blood Pressure; Chronic Disease; Echocardiography; Female; Fetal Diseases; Myocardial Contraction; Pregnancy; Sheep, Domestic; Stroke Volume; Ultrasonography, Prenatal; Vasoconstrictor Agents; Ventricular Function, Left; Ventricular Remodeling | 2010 |
Is the deficiency of the long isoform of cellular FLICE-inhibitory protein involved in myocardial remodeling?
Topics: Angiotensin II; Animals; CASP8 and FADD-Like Apoptosis Regulating Protein; Caspase 10; Humans; Hypertension; Hypertrophy, Left Ventricular; Mice; Mice, Knockout; Myocytes, Cardiac; Protein Isoforms; Ventricular Remodeling | 2010 |
Cellular FLICE-inhibitory protein protects against cardiac remodeling induced by angiotensin II in mice.
Topics: Angiotensin II; Animals; Cardiomegaly; CASP8 and FADD-Like Apoptosis Regulating Protein; Extracellular Signal-Regulated MAP Kinases; Fibrosis; Humans; Male; Mice; Mice, Transgenic; Myocardium; Vasoconstrictor Agents; Ventricular Remodeling | 2010 |
Effects of Chinese herb medicine Radix Scrophulariae on ventricular remodeling.
Topics: Angiotensin II; Animals; Collagen; Coronary Vessels; Hydroxyproline; Ligation; Male; Myocardial Infarction; Myocytes, Cardiac; Organ Size; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Scrophularia; Transforming Growth Factor beta1; Tumor Necrosis Factor-alpha; Vasoconstrictor Agents; Ventricular Remodeling | 2010 |
[Effect of Chrysanthemum indicum on ventricular remodeling in rats].
Topics: Aldosterone; Angiotensin II; Animals; Chrysanthemum; Disease Models, Animal; Drugs, Chinese Herbal; Heart Ventricles; Hypertrophy, Left Ventricular; Immunohistochemistry; Isoproterenol; Male; Mice; Myocardium; Random Allocation; Rats; Rats, Sprague-Dawley; Thyroxine; Tumor Necrosis Factor-alpha; Ventricular Function, Left; Ventricular Remodeling | 2010 |
Impairment of cardiac function and remodeling induced by myocardial infarction in rats are attenuated by the nonpeptide angiotensin-(1-7) analog AVE 0991.
Topics: Angiotensin II; Animals; Cardiomegaly; Cardiotonic Agents; Collagen; Disease Models, Animal; Hemodynamics; Imidazoles; Male; Myocardial Contraction; Myocardial Infarction; Myocardium; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Signal Transduction; Stroke Volume; Transforming Growth Factor beta1; Tumor Necrosis Factor-alpha; Ventricular Function, Left; Ventricular Remodeling | 2012 |
Caveolin-1 negatively regulates a metalloprotease-dependent epidermal growth factor receptor transactivation by angiotensin II.
Topics: ADAM Proteins; ADAM17 Protein; Angiotensin II; Animals; beta-Cyclodextrins; Calcium; Caveolin 1; Cell Movement; Cells, Cultured; ErbB Receptors; Extracellular Signal-Regulated MAP Kinases; Filipin; Gene Transfer Techniques; Hypertrophy; Membrane Microdomains; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Signal Transduction; Transcriptional Activation; Ventricular Remodeling | 2011 |
IRF3 regulates cardiac fibrosis but not hypertrophy in mice during angiotensin II-induced hypertension.
Topics: Angiotensin II; Animals; Apoptosis; Blotting, Western; Bone Marrow Transplantation; Cardiomegaly; Cell Proliferation; Cells, Cultured; DNA, Complementary; Echocardiography; Fibrosis; Gene Expression Profiling; Hypertension; Immunity, Innate; Interferon Regulatory Factor-3; Leukocyte Common Antigens; Mice; Mice, Inbred ICR; Mice, Knockout; Proto-Oncogene Proteins c-bcl-2; Ventricular Remodeling | 2011 |
Therapeutic effects of continuous infusion of brain natriuretic peptides on postmyocardial infarction ventricular remodelling in rats.
Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Cardiovascular Agents; Collagen; Cyclic GMP; Disease Models, Animal; Enalapril; Hemodynamics; I-kappa B Proteins; Inflammation Mediators; Infusion Pumps, Implantable; Infusions, Intravenous; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Myocardial Infarction; Myocardium; Natriuretic Peptide, Brain; NF-kappa B p50 Subunit; NF-KappaB Inhibitor alpha; Phosphorylation; Rats; Rats, Sprague-Dawley; Time Factors; Tissue Inhibitor of Metalloproteinase-1; Transcription Factor RelA; Ventricular Function, Left; Ventricular Remodeling | 2011 |
Pregnancy protects against antiangiogenic and fibrogenic effects of angiotensin II in rat hearts.
Topics: Angiotensin II; Animals; Collagen; Female; Fibrosis; Heart; Myocardium; Neovascularization, Physiologic; Pregnancy; Rats; Rats, Wistar; Ventricular Remodeling | 2011 |
Enhanced susceptibility to biomechanical stress in ACE2 null mice is prevented by loss of the p47(phox) NADPH oxidase subunit.
Topics: Analysis of Variance; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Cardiomyopathy, Dilated; Disease Models, Animal; Enzyme Activation; Extracellular Matrix; Heart Failure; Male; Matrix Metalloproteinases; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; NADPH Oxidases; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Phosphorylation; Stress, Mechanical; Superoxides; Time Factors; Ventricular Function, Left; Ventricular Remodeling | 2011 |
Icariin attenuates cardiac remodelling through down-regulating myocardial apoptosis and matrix metalloproteinase activity in rats with congestive heart failure.
Topics: Angiotensin II; Animals; Apoptosis; Cardiotonic Agents; Disease Models, Animal; Down-Regulation; Flavonoids; Heart Failure; Hemodynamics; Isoproterenol; Male; Matrix Metalloproteinases; Mitochondria; Myocardium; Myocytes, Cardiac; Natriuretic Peptide, Brain; Norepinephrine; Rats; Rats, Sprague-Dawley; Tumor Necrosis Factor-alpha; Ventricular Remodeling | 2011 |
Histone acetylation is essential for ANG-II-induced IGF-IIR gene expression in H9c2 cardiomyoblast cells and pathologically hypertensive rat heart.
Topics: Acetylation; Angiotensin II; Animals; Blotting, Western; Cardiomegaly; Chromatin Immunoprecipitation; CpG Islands; DNA Methylation; Gene Expression; Histones; Hypertension; Myoblasts; Myocardium; Myocytes, Cardiac; Rats; Rats, Inbred SHR; Receptor, IGF Type 2; Reverse Transcriptase Polymerase Chain Reaction; Up-Regulation; Ventricular Remodeling | 2012 |
MG132 treatment attenuates cardiac remodeling and dysfunction following aortic banding in rats via the NF-κB/TGFβ1 pathway.
Topics: Angiotensin II; Animals; Aorta, Abdominal; Collagen; Constriction; Fibrosis; Hemodynamics; Hypertension; Leupeptins; Male; Myocardium; NF-kappa B; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Rats; Rats, Sprague-Dawley; Signal Transduction; Transforming Growth Factor beta1; Ubiquitin; Ultrasonography; Ventricular Remodeling | 2011 |
New take on the role of angiotensin II in cardiac hypertrophy and fibrosis.
Topics: Aldosterone; Angiotensin II; Animals; Cardiomegaly; Fibrosis; Humans; Hypertension; Inflammation; Mice; Myocardium; Oxidative Stress; Receptor, Angiotensin, Type 1; Sodium; Ventricular Remodeling | 2011 |
Intramyocardial BNP gene delivery improves cardiac function through distinct context-dependent mechanisms.
Topics: Adenoviridae; Angiotensin II; Animals; Collagen Type III; Disease Models, Animal; Fibrosis; Gene Transfer Techniques; Genetic Therapy; Humans; Hypertension; Ligation; Male; Myocardial Infarction; Natriuretic Peptide, Brain; Neovascularization, Physiologic; Organothiophosphorus Compounds; Rats; Rats, Sprague-Dawley; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Ventricular Dysfunction, Left; Ventricular Remodeling | 2011 |
CCR2 mediates the uptake of bone marrow-derived fibroblast precursors in angiotensin II-induced cardiac fibrosis.
Topics: Analysis of Variance; Angiotensin II; Animals; Biomarkers; Blood Pressure; Bone Marrow Cells; Cardiomegaly; Cell Movement; Disease Models, Animal; Fibroblasts; Fibrosis; Heart Diseases; Heart Rate; Hypertension; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; Receptors, CCR2; Stem Cells; Stroke Volume; Time Factors; Ultrasonography; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Remodeling | 2011 |
Angiotensin II and myocardial remodeling: do macrophages hold the key?
Topics: Angiotensin II; Animals; CARD Signaling Adaptor Proteins; Macrophages; Mice; Ventricular Remodeling | 2011 |
Angiotensin II-induced dilated cardiomyopathy in Balb/c but not C57BL/6J mice.
Topics: Angiotensin II; Animals; Blood Pressure; Cardiomyopathy, Dilated; Collagen; Fibrosis; Heart Failure; Heart Rate; Interferon-gamma; Interleukin-4; Liver; Lung; Male; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Phenotype; Pulmonary Atelectasis; Stroke Volume; T-Lymphocytes, Helper-Inducer; Ventricular Remodeling | 2011 |
Adiponectin mediates cardioprotection in oxidative stress-induced cardiac myocyte remodeling.
Topics: Adiponectin; AMP-Activated Protein Kinases; Analysis of Variance; Angiotensin II; Animals; Atrial Natriuretic Factor; Cardiomegaly; Cells, Cultured; Disease Models, Animal; Extracellular Signal-Regulated MAP Kinases; Fibrosis; Genes, Reporter; Hydrogen Peroxide; Hypertrophy, Left Ventricular; Male; Matrix Metalloproteinases; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocytes, Cardiac; NADPH Oxidases; Natriuretic Peptide, Brain; NF-kappa B; Oxidants; Oxidative Stress; Phosphorylation; Rats; Reactive Oxygen Species; Recombinant Proteins; RNA, Messenger; Signal Transduction; Time Factors; Transfection; Ventricular Remodeling | 2011 |
Effects of ethanolic extract from Radix Scrophulariae on ventricular remodeling in rats.
Topics: Angiotensin II; Animals; Atrial Natriuretic Factor; Blood Chemical Analysis; Captopril; Cardiomegaly; Collagen; Coronary Vessels; Endothelin-1; Ethanol; Gene Expression Regulation; Hemodynamics; Hydroxyproline; Male; Matrix Metalloproteinase 2; Myocardial Infarction; Myocardium; Myocytes, Cardiac; Organ Size; Plant Extracts; Plant Roots; Random Allocation; Rats; Rats, Sprague-Dawley; Renin-Angiotensin System; RNA, Messenger; Scrophularia; Tumor Necrosis Factor-alpha; Ventricular Remodeling | 2012 |
Myocardial performance and its acute response to angiotensin II infusion in fetal sheep adapted to chronic anemia.
Topics: Anemia; Angiotensin II; Animals; Cardiotonic Agents; Disease Models, Animal; Female; Fetal Diseases; Pregnancy; Sheep, Domestic; Vasoconstrictor Agents; Ventricular Function; Ventricular Remodeling | 2012 |
Loss of fibulin-2 protects against progressive ventricular dysfunction after myocardial infarction.
Topics: Angiotensin II; Animals; Calcium-Binding Proteins; Extracellular Matrix Proteins; Gene Expression; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardial Infarction; Myocardium; Signal Transduction; Transforming Growth Factor beta; Ventricular Function, Left; Ventricular Remodeling; Wound Healing | 2012 |
Angiotensin-(1-7) attenuates angiotensin II-induced cardiac remodeling associated with upregulation of dual-specificity phosphatase 1.
Topics: Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Cardiomegaly; Drug Interactions; Dual Specificity Phosphatase 1; Fibrosis; Hypertension; Male; MAP Kinase Signaling System; Myocardium; Peptide Fragments; Rats; Rats, Sprague-Dawley; Up-Regulation; Vasoconstrictor Agents; Ventricular Remodeling | 2012 |
Does p63RhoGEF, a new key mediator of angiotensin II signalling, play a role in blood pressure regulation and cardiovascular remodelling in humans?
Topics: Angiotensin II; Blood Pressure; Guanine Nucleotide Exchange Factors; Humans; Nitric Oxide; Receptor, Angiotensin, Type 1; Rho Guanine Nucleotide Exchange Factors; rho-Associated Kinases; rhoA GTP-Binding Protein; Signal Transduction; Ventricular Remodeling | 2011 |
Involvement of autophagy in cardiac remodeling in transgenic mice with cardiac specific over-expression of human programmed cell death 5.
Topics: Angiotensin II; Animals; Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Cardiomegaly; Cardiomyopathy, Dilated; Heart Failure; Humans; Mice; Mice, Transgenic; Myocardium; Myosin Heavy Chains; Neoplasm Proteins; Organ Specificity; Survival Analysis; Ultrasonography; Up-Regulation; Ventricular Remodeling | 2012 |
Partial restoration of cardio-vascular defects in a rescued severe model of spinal muscular atrophy.
Topics: Angiotensin II; Animals; Coronary Vessels; Disease Models, Animal; Fibrosis; Genetic Therapy; Heart; Heart Ventricles; Mice; Mice, Knockout; Muscular Atrophy, Spinal; NADPH Oxidases; Oxidative Stress; Receptor, Angiotensin, Type 1; Spinal Cord; Survival of Motor Neuron 1 Protein; Ventricular Remodeling | 2012 |
The epidermal growth factor receptor is involved in angiotensin II but not aldosterone/salt-induced cardiac remodelling.
Topics: Aldosterone; Angiotensin II; Animals; Blood Pressure; ErbB Receptors; Heart; Male; Mice; Mice, Transgenic; Nephrectomy; Salts; Sodium Chloride, Dietary; Up-Regulation; Ventricular Remodeling | 2012 |
Cardiac lineage protein-1 (CLP-1) regulates cardiac remodeling via transcriptional modulation of diverse hypertrophic and fibrotic responses and angiotensin II-transforming growth factor β (TGF-β1) signaling axis.
Topics: Angiotensin II; Angiotensinogen; Animals; Cardiomegaly; Extracellular Matrix; Fibroblasts; Fibrosis; Heterozygote; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Myosin Heavy Chains; RNA-Binding Proteins; Signal Transduction; Smad3 Protein; STAT3 Transcription Factor; Transcription Factors; Transcription, Genetic; Transforming Growth Factor beta1; Ventricular Remodeling | 2012 |
Activation of GPR30 attenuates diastolic dysfunction and left ventricle remodelling in oophorectomized mRen2.Lewis rats.
Topics: Angiotensin II; Animals; Atrial Natriuretic Factor; Blood Pressure; Calcium; Cardiotonic Agents; Cell Line; Collagen; Cyclopentanes; Echocardiography, Doppler; Estrogens; Female; Gene Expression Regulation; Genotype; Hypertrophy, Left Ventricular; Injections, Subcutaneous; Mice; Myocytes, Cardiac; NADPH Oxidase 4; NADPH Oxidases; Natriuretic Peptide, Brain; Ovariectomy; Phenotype; Quinolines; Rats; Rats, Inbred Lew; Rats, Transgenic; Receptors, G-Protein-Coupled; Renin; RNA, Messenger; Time Factors; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Remodeling | 2012 |
Time course of hydrogen peroxide-thioredoxin balance and its influence on the intracellular signalling in myocardial infarction.
Topics: Angiotensin II; Animals; Antioxidants; Apoptosis Regulatory Proteins; Glutathione Disulfide; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Heart; Heart Failure; Hydrogen Peroxide; Male; MAP Kinase Kinase 4; MAP Kinase Signaling System; Myocardial Infarction; Myocardium; Oxidative Stress; Proto-Oncogene Proteins c-akt; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Renin-Angiotensin System; Signal Transduction; Thioredoxins; TOR Serine-Threonine Kinases; Ventricular Remodeling | 2012 |
Differential effects of high-fat diet on myocardial lipid metabolism in failing and nonfailing hearts with angiotensin II-mediated cardiac remodeling in mice.
Topics: Angiotensin II; Angiotensinogen; Animals; Diet, High-Fat; Dietary Fats; Fatty Acids; Heart Failure; Hypertrophy, Left Ventricular; Lipid Metabolism; Male; Mice; Mice, Transgenic; Models, Animal; Myocardial Contraction; Myocardium; Oxidation-Reduction; Palmitates; Triglycerides; Ventricular Remodeling | 2012 |
Cardiac remodeling is not modulated by overexpression of muscle LIM protein (MLP).
Topics: Angiotensin II; Animals; Animals, Newborn; Aorta; Blood Pressure; Cardiomegaly; Cells, Cultured; Disease Models, Animal; Gene Expression Regulation; Genotype; Ligation; LIM Domain Proteins; Mice; Mice, 129 Strain; Mice, Transgenic; Muscle Proteins; Myocardial Contraction; Myocardium; Phenotype; Rats; Rats, Wistar; Ultrasonography; Ventricular Function, Left; Ventricular Remodeling | 2012 |
Role of heart rate reduction in the prevention of experimental heart failure: comparison between If-channel blockade and β-receptor blockade.
Topics: Adrenergic beta-1 Receptor Antagonists; Angiotensin II; Animals; Apoptosis; Benzazepines; Cyclic Nucleotide-Gated Cation Channels; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Heart Failure; Heart Rate; Immunohistochemistry; In Situ Nick-End Labeling; Ivabradine; Male; Metoprolol; Mice; Mice, Inbred C57BL; Multivariate Analysis; Random Allocation; Sensitivity and Specificity; Statistics, Nonparametric; Tachycardia; Treatment Outcome; Ventricular Dysfunction, Left; Ventricular Remodeling | 2012 |
Angiotensin II plays a critical role in alcohol-induced cardiac nitrative damage, cell death, remodeling, and cardiomyopathy in a protein kinase C/nicotinamide adenine dinucleotide phosphate oxidase-dependent manner.
Topics: Angiotensin II; Animals; Cardiomyopathy, Alcoholic; Cell Death; Disease Models, Animal; Disease Progression; Ethanol; Heart Ventricles; Immunohistochemistry; Male; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; NADP; Oxidative Stress; Protein Kinase C; Ventricular Remodeling | 2012 |
Reverse right ventricular structural and extracellular matrix remodeling by estrogen in severe pulmonary hypertension.
Topics: ADAM Proteins; ADAM17 Protein; Angiotensin II; Animals; Cells, Cultured; Estradiol; Estrogen Receptor alpha; Estrogen Receptor beta; Extracellular Matrix; Female; Fibroblasts; Hypertension, Pulmonary; Male; Membrane Proteins; Monocrotaline; Nitriles; Osteopontin; Phenols; Propionates; Pyrazoles; Rats; Rats, Sprague-Dawley; Severity of Illness Index; Ventricular Remodeling | 2012 |
Carboxyl terminus of heat shock protein 70-interacting protein inhibits angiotensin II-induced cardiac remodeling.
Topics: Angiotensin II; Angiotensins; Animals; Apoptosis; Fibrosis; Heart; Mice; Mice, Transgenic; Mitogen-Activated Protein Kinases; Myocardium; Myocytes, Cardiac; NF-kappa B; Rats; Ubiquitin-Protein Ligases; Ventricular Remodeling | 2012 |
Cardiac kallikrein-kinin system is upregulated in chronic volume overload and mediates an inflammatory induced collagen loss.
Topics: Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Aprotinin; Bradykinin; Catecholamines; Cell Count; Cell Degranulation; Chymases; Collagen; Extracellular Fluid; Gelatinases; Heart Ventricles; Hemodynamics; Immunohistochemistry; Inflammation; Kallikrein-Kinin System; Mast Cells; Models, Cardiovascular; Myocardium; Peptidyl-Dipeptidase A; Rats; Receptors, Bradykinin; RNA, Messenger; Ultrasonography; Up-Regulation; Vascular Fistula; Ventricular Remodeling | 2012 |
Exercise induces renin-angiotensin system unbalance and high collagen expression in the heart of Mas-deficient mice.
Topics: Angiotensin I; Angiotensin II; Animals; Collagen; Collagen Type I; Collagen Type III; Gene Expression Regulation; Heart; Hypertrophy, Left Ventricular; Male; Mice; Mice, Knockout; Peptide Fragments; Physical Conditioning, Animal; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Ventricular Remodeling | 2012 |
Adverse cardiac remodelling in spontaneously hypertensive rats: acceleration by high aerobic exercise intensity.
Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Captopril; Female; Hypertension; Physical Conditioning, Animal; Rats; Rats, Inbred SHR; Rats, Wistar; Risk Factors; Ventricular Remodeling | 2012 |
Enhanced angiotensin II-induced cardiac and aortic remodeling in ACE2 knockout mice.
Topics: Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Aorta; Blood Pressure; Heart Rate; Infusion Pumps; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Peptidyl-Dipeptidase A; Ventricular Remodeling | 2013 |
Irbesartan and emodin on myocardial remodeling in Goldblatt hypertensive rats.
Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Biphenyl Compounds; Blood Pressure; Connective Tissue Growth Factor; Drug Therapy, Combination; Emodin; Gene Expression Regulation; Hypertension; Irbesartan; Random Allocation; Rats; Rats, Sprague-Dawley; RNA, Messenger; Tetrazoles; Transforming Growth Factor beta1; Ventricular Remodeling | 2012 |
Selective PDE5A inhibition with sildenafil rescues left ventricular dysfunction, inflammatory immune response and cardiac remodeling in angiotensin II-induced heart failure in vivo.
Topics: Angiotensin II; Animals; Antihypertensive Agents; Apoptosis; Cyclic GMP-Dependent Protein Kinase Type I; Cyclic Nucleotide Phosphodiesterases, Type 5; Cytokines; Extracellular Matrix; Heart Failure; Heart Function Tests; Hydralazine; Male; Mice; Mice, Inbred C57BL; Myocarditis; Myocardium; Phosphodiesterase 5 Inhibitors; Piperazines; Purines; Receptor for Advanced Glycation End Products; Receptors, Immunologic; Sildenafil Citrate; Sulfones; Vasoconstrictor Agents; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Remodeling | 2012 |
Olmesartan attenuates cardiac remodeling through DLL4/Notch1 pathway activation in pressure overload mice.
Topics: Adaptor Proteins, Signal Transducing; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Calcium-Binding Proteins; Dipeptides; Disease Models, Animal; Fibrosis; Hypertrophy, Left Ventricular; Imidazoles; Intracellular Signaling Peptides and Proteins; Male; Membrane Proteins; Mice; Mice, Inbred C57BL; Microcirculation; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Receptor, Notch1; Tetrazoles; Up-Regulation; Ventricular Dysfunction, Left; Ventricular Remodeling | 2013 |
Effect of oxymatrine, the active component from Radix Sophorae flavescentis (Kushen), on ventricular remodeling in spontaneously hypertensive rats.
Topics: Alkaloids; Angiotensin II; Animals; Anti-Arrhythmia Agents; Blood Pressure; Collagen; Drug Evaluation, Preclinical; Drugs, Chinese Herbal; Heart; Heart Rate; Hypertension; Male; MAP Kinase Signaling System; Myocardium; Norepinephrine; Organ Size; Peptidyl-Dipeptidase A; Phytotherapy; Quinolizines; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Transforming Growth Factor beta1; Ventricular Remodeling | 2013 |
NF-κB mediated miR-26a regulation in cardiac fibrosis.
Topics: Angiotensin II; Animals; Cells, Cultured; Collagen Type I; Connective Tissue Growth Factor; Fibrosis; Gene Expression Regulation; I-kappa B Proteins; Mice; Mice, Mutant Strains; Mice, Transgenic; MicroRNAs; Models, Cardiovascular; Mutant Proteins; Myocardium; NF-kappa B; NF-KappaB Inhibitor alpha; Rats; RNA, Messenger; Ventricular Remodeling | 2013 |
Atrial natriuretic peptide exerts protective action against angiotensin II-induced cardiac remodeling by attenuating inflammation via endothelin-1/endothelin receptor A cascade.
Topics: Angiotensin II; Animals; Anti-Inflammatory Agents; Atrial Natriuretic Factor; Cardiomegaly; Cells, Cultured; Disease Models, Animal; Endothelin-1; Fibrillar Collagens; Fibroblasts; Fibrosis; Heart Diseases; Inflammation; Inflammation Mediators; Infusions, Intravenous; Macrophages; Male; Mitral Valve; Myocardial Contraction; Myocardium; Rats; Rats, Inbred WKY; Receptor, Endothelin A; Signal Transduction; Stroke Volume; Time Factors; Ventricular Function, Left; Ventricular Remodeling | 2013 |
PPARγ activation improves the molecular and functional components of I(to) remodeling by angiotensin II.
Topics: Angiotensin II; Animals; Atrial Remodeling; Cardiotonic Agents; Cells, Cultured; Diabetic Cardiomyopathies; Down-Regulation; Hypoglycemic Agents; Male; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Myocytes, Cardiac; Oxidative Stress; Potassium Channels, Voltage-Gated; PPAR gamma; Protein Transport; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Rosiglitazone; Thiazolidinediones; Ventricular Remodeling | 2013 |
Attenuation of increased secretory leukocyte protease inhibitor, matricellular proteins and angiotensin II and left ventricular remodeling by candesartan and omapatrilat during healing after reperfused myocardial infarction.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Apoptosis; Benzimidazoles; Biphenyl Compounds; Collagen; Male; Myocardial Infarction; Myocardial Reperfusion; Osteonectin; Pyridines; Rats, Sprague-Dawley; Secretory Leukocyte Peptidase Inhibitor; Tetrazoles; Thiazepines; Ventricular Remodeling | 2013 |
Is cardiovascular remodeling in patients with essential hypertension related to more than high blood pressure? A LIFE substudy. Losartan Intervention For Endpoint-Reduction in Hypertension.
Topics: Aged; Aldosterone; Angiotensin II; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood Vessels; Cardiovascular Physiological Phenomena; Carotid Arteries; Echocardiography; Epinephrine; Female; Humans; Hypertension; Hypertrophy, Left Ventricular; Magnetic Resonance Imaging; Male; Middle Aged; Muscle, Smooth, Vascular; Plethysmography, Impedance; Regression Analysis; Vascular Resistance; Ventricular Remodeling | 2002 |
Guanylyl cyclase-A inhibits angiotensin II type 1A receptor-mediated cardiac remodeling, an endogenous protective mechanism in the heart.
Topics: Angiotensin II; Angiotensin Receptor Antagonists; Angiotensinogen; Animals; Atrial Natriuretic Factor; Blood Pressure; Body Weight; Cardiomegaly; Collagen; Fibrosis; Gene Targeting; Guanylate Cyclase; Heart Rate; Heart Ventricles; Hypertension; Imidazoles; Mice; Mice, Knockout; Myocardium; Natriuretic Peptide, Brain; Olmesartan Medoxomil; Organ Size; Peptidyl-Dipeptidase A; Receptor, Angiotensin, Type 1; Receptors, Angiotensin; Receptors, Atrial Natriuretic Factor; RNA, Messenger; Tetrazoles; Transforming Growth Factor beta; Transforming Growth Factor beta1; Transforming Growth Factor beta2; Ventricular Remodeling | 2002 |
The role of locally expressed angiotensin converting enzyme in cardiac remodeling after myocardial infarction in mice.
Topics: Angiotensin I; Angiotensin II; Animals; Collagen; Hemodynamics; Kidney; Mice; Mice, Inbred C57BL; Myocardial Infarction; Myocardium; Peptidyl-Dipeptidase A; Renin-Angiotensin System; Ventricular Remodeling | 2002 |
Beneficial effects of combination of ACE inhibitor and angiotensin II type 1 receptor blocker on cardiac remodeling in rat myocardial infarction.
Topics: Angiotensin II; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Atrial Natriuretic Factor; Blotting, Northern; Collagen; Diastole; Drug Therapy, Combination; Echocardiography, Doppler; Imidazoles; Male; Models, Animal; Myocardial Infarction; Myocardium; Natriuretic Peptide, Brain; Olmesartan Medoxomil; Rats; Rats, Wistar; RNA, Messenger; Tetrazoles; Thiazepines; Ventricular Remodeling | 2003 |
The functional role of the JAK-STAT pathway in post-infarction remodeling.
Topics: Angiotensin II; Animals; Anti-Arrhythmia Agents; Apoptosis; DNA-Binding Proteins; Janus Kinase 1; Janus Kinase 2; Losartan; Milk Proteins; Models, Animal; Myocardial Infarction; Myocardium; Potassium Channels; Protein-Tyrosine Kinases; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Renin-Angiotensin System; Signal Transduction; STAT1 Transcription Factor; STAT3 Transcription Factor; STAT5 Transcription Factor; Time Factors; Trans-Activators; Tyrphostins; Ventricular Remodeling | 2003 |
[Effects of lorsartan, fosinopril on myocardial fibrosis, angiotensin II and cardiac remolding in hypertensive rats].
Topics: Angiotensin II; Animals; Antihypertensive Agents; Fibrosis; Fosinopril; Hypertension; Losartan; Male; Myocardium; Random Allocation; Rats; Rats, Inbred SHR; Ventricular Remodeling | 2001 |
[Induction of left ventricular remodeling and dysfunction in the recipient heart following donor heart myocardial infarction: new insights into the pathological role of tumor necrosis factor-alpha from a novel heterotopic transplant-coronary ligation mode
Topics: Angiotensin II; Animals; Heart Transplantation; Myocardial Infarction; Rats; Rats, Inbred Lew; Tissue Donors; Transplantation, Heterotopic; Tumor Necrosis Factor-alpha; Ventricular Function, Left; Ventricular Remodeling | 2003 |
[Angiotensin II regulates the expression of collagens in rat heart].
Topics: Angiotensin II; Angiotensin Receptor Antagonists; Animals; Collagen Type I; Collagen Type III; Imidazoles; Male; Myocardium; Rats; Rats, Sprague-Dawley; RNA, Messenger; Tetrazoles; Ventricular Remodeling | 1999 |
Cardiac interstitial bradykinin and mast cells modulate pattern of LV remodeling in volume overload in rats.
Topics: Acute Disease; Angiotensin II; Animals; Aorta; Arteriovenous Fistula; Bradykinin; Cardiac Volume; Cell Count; Chymases; Consciousness; Disease Models, Animal; Extracellular Space; Mast Cells; Microdialysis; Myocardium; Peptidyl-Dipeptidase A; Rats; Rats, Sprague-Dawley; Serine Endopeptidases; Vena Cava, Inferior; Ventricular Remodeling | 2003 |
Induction of left ventricular remodeling and dysfunction in the recipient heart after donor heart myocardial infarction: new insights into the pathologic role of tumor necrosis factor-alpha from a novel heterotopic transplant-coronary ligation rat model.
Topics: Angiotensin II; Animals; Disease Models, Animal; Heart Transplantation; Immunohistochemistry; Male; Rats; Rats, Inbred Lew; Receptors, Tumor Necrosis Factor; Stroke Volume; Transplantation, Heterotopic; Tumor Necrosis Factor-alpha; Ventricular Dysfunction, Left; Ventricular Remodeling | 2003 |
Activation and functional significance of the renin-angiotensin system in mice with cardiac restricted overexpression of tumor necrosis factor.
Topics: Age Factors; Angiotensin I; Angiotensin II; Angiotensin Receptor Antagonists; Angiotensinogen; Animals; Body Weight; Cardiomegaly; Collagen; Hemodynamics; Losartan; Mice; Mice, Transgenic; Myocardium; Organ Size; Organ Specificity; Peptidyl-Dipeptidase A; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, Angiotensin; Renin; Renin-Angiotensin System; RNA, Messenger; Tumor Necrosis Factor-alpha; Ventricular Remodeling | 2003 |
Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction.
Topics: Angiotensin II; Animals; Chemokine CCL2; Cytokines; Disease Models, Animal; Disease Progression; Gene Expression Regulation; Genetic Therapy; Heart Failure; Humans; Immunohistochemistry; Male; Matrix Metalloproteinases; Mice; Muscle, Skeletal; Myocardial Infarction; Myocardium; Sequence Deletion; Survival Rate; Tumor Necrosis Factor-alpha; Ventricular Dysfunction, Left; Ventricular Remodeling | 2003 |
Apoptosis signal-regulating kinase 1 plays a pivotal role in angiotensin II-induced cardiac hypertrophy and remodeling.
Topics: Angiotensin II; Animals; Apoptosis; Blood Pressure; Body Weight; Cardiomegaly; Coronary Vessels; Disease Models, Animal; Disease Progression; Fibrosis; Gene Expression; Heart Rate; Infusion Pumps, Implantable; MAP Kinase Kinase Kinase 5; MAP Kinase Kinase Kinases; Mice; Mice, Knockout; Mitogen-Activated Protein Kinases; Myocardium; Receptor, Angiotensin, Type 1; Superoxides; Ventricular Remodeling | 2003 |
Elevated intracardiac angiotensin II leads to cardiac hypertrophy and mechanical dysfunction in normotensive mice.
Topics: Angiotensin II; Angiotensinogen; Animals; Blood Pressure; Cardiomegaly; Heart Rate; Mice; Mice, Transgenic; Myocardial Contraction; Myocardium; Rats; Tachycardia, Ventricular; Ventricular Remodeling | 2003 |
Nitric oxide's role in heart failure: pathophysiology and treatment. Introduction.
Topics: Adrenergic beta-Antagonists; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Black or African American; Heart Failure; Humans; Nitric Oxide; Ventricular Remodeling | 2003 |
Valsartan restores sarcoplasmic reticulum function with no appreciable effect on resting cardiac function in pacing-induced heart failure.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Calcium Signaling; Calcium-Transporting ATPases; Cardiac Pacing, Artificial; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Dobutamine; Dogs; Drug Evaluation, Preclinical; Heart Failure; Myocardial Contraction; Norepinephrine; Phosphorylation; Protein Processing, Post-Translational; Receptors, Adrenergic, beta; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum; Tachycardia, Ventricular; Tacrolimus Binding Proteins; Tetrazoles; Valine; Valsartan; Ventricular Remodeling | 2004 |
Sub-depressor dose of angiotensin type-1 receptor blocker inhibits transforming growth factor-beta-mediated perivascular fibrosis in hypertensive rat hearts.
Topics: Administration, Oral; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Aorta; Benzimidazoles; Biphenyl Compounds; Collagen; Constriction; Disease Models, Animal; Dose-Response Relationship, Drug; Endomyocardial Fibrosis; Fibroblasts; Hypertension; Male; Myocytes, Cardiac; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Tetrazoles; Time Factors; Transforming Growth Factor beta; Ventricular Remodeling | 2003 |
Angiotensin II type 1a receptor is involved in cell infiltration, cytokine production, and neovascularization in infarcted myocardium.
Topics: Angiotensin II; Animals; Arterioles; Capillaries; Chemotaxis, Leukocyte; Collateral Circulation; Cytokines; Enzyme Inhibitors; Granulocytes; Macrophages; Male; Mice; Mice, Knockout; Myocardial Infarction; Neovascularization, Pathologic; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Receptor, Angiotensin, Type 1; Sarcoma 180; T-Lymphocytes; Ventricular Remodeling | 2004 |
Protective effects of endogenous adrenomedullin on cardiac hypertrophy, fibrosis, and renal damage.
Topics: Adrenomedullin; Angiotensin II; Angiotensinogen; Animals; Aorta, Abdominal; Cardiomegaly; Collagen Type I; Constriction; Enzyme Activation; Enzyme Inhibitors; Fibroblasts; Fibrosis; Gene Expression Regulation; Genes, fos; Genes, Lethal; Glomerulosclerosis, Focal Segmental; Heterozygote; Male; MAP Kinase Signaling System; Mice; Mice, Knockout; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Myocytes, Cardiac; Natriuretic Peptide, Brain; Peptides; Peptidyl-Dipeptidase A; Protein Kinase C; Proto-Oncogene Proteins c-fos; Transforming Growth Factor beta; Ventricular Remodeling | 2004 |
Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors.
Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Animals; Carboxypeptidases; Cardiomyopathy, Hypertrophic; Coronary Vessels; Disease Models, Animal; Enzyme Induction; Imidazoles; Ligation; Losartan; Male; Myocardial Infarction; Myocardium; Olmesartan Medoxomil; Peptide Fragments; Peptidyl-Dipeptidase A; Pyridines; Rats; Rats, Inbred Lew; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; RNA, Messenger; Tetrazoles; Ventricular Remodeling | 2004 |
Prevention of sympathetic and cardiac dysfunction after myocardial infarction in transgenic rats deficient in brain angiotensinogen.
Topics: Angiotensin II; Angiotensinogen; Animals; Animals, Genetically Modified; Baroreflex; Brain; DNA, Antisense; Genes, Synthetic; Glial Fibrillary Acidic Protein; Heart Rate; Hypothalamus; Injections, Intraventricular; Male; Myocardial Infarction; Organ Size; Promoter Regions, Genetic; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Reflex, Abnormal; Renin-Angiotensin System; Stress, Psychological; Stroke Volume; Sympathetic Nervous System; Transgenes; Ventricular Dysfunction, Left; Ventricular Remodeling | 2004 |
Cardiac angiotensin AT2 receptor: what exactly does it do?
Topics: Angiotensin II; Animals; Fibrosis; Genetic Predisposition to Disease; Humans; Hypertrophy, Left Ventricular; Introns; Mice; Mice, Knockout; Myocardium; Phosphoprotein Phosphatases; Polymorphism, Genetic; Prospective Studies; Rats; Receptor, Angiotensin, Type 2; Ventricular Remodeling | 2004 |
Profibrotic effects of angiotensin II in the heart: a matter of mediators.
Topics: Angiotensin II; Animals; Collagen Type I; Collagen Type III; Fibrosis; Humans; Hypertrophy; Mice; Mice, Knockout; Myocardium; Myocytes, Cardiac; Osteopontin; Sialoglycoproteins; Ventricular Remodeling | 2004 |
Role of osteopontin in cardiac fibrosis and remodeling in angiotensin II-induced cardiac hypertrophy.
Topics: Aldosterone; Angiotensin II; Animals; Apoptosis; Blood Pressure; Cardiomegaly; Cell Size; Eplerenone; Fibrosis; Heart Rate; Hypertrophy, Left Ventricular; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; Myocytes, Cardiac; Osteopontin; Reverse Transcriptase Polymerase Chain Reaction; Sialoglycoproteins; Spironolactone; Ultrasonography; Ventricular Remodeling | 2004 |
GH suppresses TGF-beta-mediated fibrosis and retains cardiac diastolic function.
Topics: Angiotensin II; Animals; Cells, Cultured; Diastole; Echocardiography; Extracellular Matrix Proteins; Female; Fibroblasts; Fibrosis; Growth Hormone; Insulin-Like Growth Factor I; Matrix Metalloproteinases; Myocardium; Rats; Rats, Inbred WF; Signal Transduction; Transforming Growth Factor beta; Ventricular Remodeling | 2004 |
[Effects of shenqifuxin oral liquid on the plasma kaliuretic peptide, the myocardial contractility and relaxation of left ventricle and the left ventricular remodeling in experimental rats with heart failure].
Topics: Administration, Oral; Angiotensin II; Animals; Astragalus propinquus; Atrial Natriuretic Factor; Cardiotonic Agents; Drug Combinations; Drugs, Chinese Herbal; Endothelins; Heart Failure; Male; Myocardial Contraction; Ophiopogon; Panax; Plants, Medicinal; Protein Precursors; Rats; Rats, Sprague-Dawley; Ventricular Function, Left; Ventricular Remodeling | 2003 |
Remodeling of the chronic severely failing ischemic sheep heart after coronary microembolization: functional, energetic, structural, and cellular responses.
Topics: Aldosterone; Angiotensin II; Animals; Atrial Natriuretic Factor; Caspase 2; Caspase 3; Caspase 8; Caspases; Chronic Disease; Collagen; Coronary Vessels; Embolism; Extracellular Matrix; Fas Ligand Protein; Female; Heart Failure; Male; Membrane Glycoproteins; Microcirculation; Microspheres; Myocardial Contraction; Myocardial Ischemia; Myocardium; Severity of Illness Index; Sheep; Stroke Volume; Ventricular Remodeling | 2004 |
Defining "culprit mechanisms" in arrhythmogenic cardiac remodeling.
Topics: Angiotensin II; Animals; Arrhythmias, Cardiac; Atrial Fibrillation; Dogs; Fibrosis; Heart Atria; Heart Failure; Humans; Mice; Mice, Transgenic; Models, Animal; Myocardium; Transforming Growth Factor beta; Transforming Growth Factor beta1; Ventricular Remodeling | 2004 |
Tachycardia-induced remodeling: atria and ventricles take a different route.
Topics: Angiotensin II; Animals; Apoptosis; Dogs; Electrocardiography; Fibrosis; Heart Atria; Heart Block; Heart Ventricles; Humans; MAP Kinase Signaling System; Tachycardia; Ventricular Remodeling | 2004 |
Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure.
Topics: Angiotensin II; Animals; Apoptosis; Blotting, Western; Cardiac Pacing, Artificial; Cell Death; Dogs; Fibrosis; Heart Atria; Heart Failure; Heart Ventricles; Humans; Leukocytes; Mitogen-Activated Protein Kinases; Transforming Growth Factor beta; Ventricular Remodeling | 2004 |
Essential role of vascular endothelial growth factor in angiotensin II-induced vascular inflammation and remodeling.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Aorta; Cell Division; Chemokine CCL2; Coronary Vessels; DNA-Binding Proteins; Extracellular Matrix Proteins; Gene Expression Profiling; Genetic Therapy; Hypertrophy; Hypertrophy, Left Ventricular; Hypoxia-Inducible Factor 1; Hypoxia-Inducible Factor 1, alpha Subunit; Imidazoles; Intercellular Adhesion Molecule-1; Interleukin-1; Interleukin-6; Macrophages; Male; Mice; Mice, Inbred C57BL; Myosin Heavy Chains; Natriuretic Peptide, Brain; Nonmuscle Myosin Type IIB; Nuclear Proteins; Olmesartan Medoxomil; Receptors, CCR2; Receptors, Chemokine; Recombinant Fusion Proteins; Renin-Angiotensin System; Reverse Transcriptase Polymerase Chain Reaction; Tetrazoles; Transcription Factors; Transforming Growth Factor beta; Transforming Growth Factor beta1; Tunica Media; Vascular Cell Adhesion Molecule-1; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-2; Vasculitis; Ventricular Remodeling | 2004 |
Cellular basis for therapeutic choices in heart failure.
Topics: Adrenergic beta-Antagonists; Aldosterone; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Cardiac Output, Low; Clinical Trials as Topic; Drug Therapy, Combination; Fibrosis; Humans; Mineralocorticoid Receptor Antagonists; Myocardium; Receptors, Adrenergic, beta; Signal Transduction; Ventricular Remodeling | 2004 |
Angiotensin AT2 receptor contributes to cardiovascular remodelling of aged rats during chronic AT1 receptor blockade.
Topics: Aging; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin II Type 2 Receptor Blockers; Animals; Aorta; Benzimidazoles; Biphenyl Compounds; Blood Pressure; Cardiomegaly; Fibrosis; Heart Rate; Hypertrophy; Imidazoles; Myocardium; Pyridines; Rats; Rats, Inbred WKY; Receptor, Angiotensin, Type 2; Telemetry; Tetrazoles; Ventricular Remodeling | 2004 |
Antifibrotic effect of adrenomedullin on coronary adventitia in angiotensin II-induced hypertensive rats.
Topics: Actins; Adrenomedullin; Angiotensin II; Animals; Blood Pressure; Body Weight; Cardiotonic Agents; Cell Differentiation; Cell Division; Cell Size; Collagen Type I; Connective Tissue; Fibroblasts; Heart Ventricles; Humans; Hypertension; Male; Myocytes, Cardiac; Peptides; Rats; Rats, Wistar; Recombinant Proteins; Transforming Growth Factor beta; Transforming Growth Factor beta1; Ventricular Remodeling | 2005 |
A potential role for angiotensin II in obesity induced cardiac hypertrophy and ischaemic/reperfusion injury.
Topics: Angiotensin II; Animals; Blood Glucose; Cardiac Output; Cardiomegaly; Male; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; Obesity; Rats; Rats, Wistar; Tumor Necrosis Factor-alpha; Ventricular Remodeling | 2005 |
Hepatocyte growth factor prevents tissue fibrosis, remodeling, and dysfunction in cardiomyopathic hamster hearts.
Topics: Angiotensin II; Animals; Cardiomyopathy, Dilated; Cardiomyopathy, Hypertrophic; CHO Cells; Cricetinae; Fibrosis; Gene Expression; Hepatocyte Growth Factor; Humans; Male; Mesocricetus; Myocytes, Cardiac; Proto-Oncogene Proteins c-met; Transforming Growth Factor beta; Transforming Growth Factor beta1; Ultrasonography; Vasoconstrictor Agents; Ventricular Remodeling | 2005 |
The angiotensin II type 2 receptor and improved adjacent region function post-MI.
Topics: Angiotensin II; Animals; Collagen; Contrast Media; Disease Models, Animal; Gadolinium DTPA; Heart Ventricles; Image Processing, Computer-Assisted; Magnetic Resonance Imaging, Cine; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Myocardial Contraction; Myocardial Infarction; Myocytes, Cardiac; Receptor, Angiotensin, Type 2; Stroke Volume; Systole; Ventricular Dysfunction, Left; Ventricular Remodeling | 2005 |
Blockade of NF-kappaB ameliorates myocardial hypertrophy in response to chronic infusion of angiotensin II.
Topics: Angiotensin II; Animals; Chemokine CCL5; Dose-Response Relationship, Drug; Echocardiography; Electrophoretic Mobility Shift Assay; Hypertrophy, Left Ventricular; Immunohistochemistry; Infusions, Intravenous; Male; MAP Kinase Kinase 4; Mice; Mice, Knockout; Mitogen-Activated Protein Kinases; Models, Animal; Myocardium; NF-kappa B; Receptors, Angiotensin; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Tumor Necrosis Factor-alpha; Ventricular Remodeling | 2005 |
Angiotensin II and cell-matrix adhesion: PKCepsilon is essential.
Topics: Angiotensin II; Cell Adhesion; Cell-Matrix Junctions; Collagen; Heart Failure; Humans; Integrin beta1; Myocardium; Signal Transduction; Ventricular Remodeling | 2005 |
[Calpain involved in signal transduction of myocardial remodeling in patients with congestive heart failure].
Topics: Adaptor Proteins, Signal Transducing; Adult; Angiotensin II; Calcineurin; Calpain; Female; Heart Failure; Humans; Male; Middle Aged; Myocardium; Signal Transduction; Ventricular Remodeling | 2005 |
Protein kinase C epsilon mediates angiotensin II-induced activation of beta1-integrins in cardiac fibroblasts.
Topics: Angiotensin II; Animals; Blotting, Western; Cell Adhesion; Cell-Matrix Junctions; Collagen; Enzyme Activation; Fluorescent Antibody Technique; Heart Failure; Integrin beta1; Mice; Mice, Knockout; Models, Animal; Myocytes, Cardiac; Phosphorylation; Rats; Rats, Sprague-Dawley; Ventricular Remodeling | 2005 |
Androgen receptor gene knockout male mice exhibit impaired cardiac growth and exacerbation of angiotensin II-induced cardiac fibrosis.
Topics: Angiotensin II; Animals; Blood Pressure; Cardiomegaly; DNA-Binding Proteins; Fibrosis; Heart Rate; Male; Mice; Mice, Inbred C57BL; Mice, Inbred CBA; Mice, Knockout; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinase 7; Myocardium; Receptors, Androgen; RNA, Messenger; Smad2 Protein; Trans-Activators; Transforming Growth Factor beta; Transforming Growth Factor beta1; Ventricular Remodeling | 2005 |
Angiotensin II-mediated phenotypic cardiomyocyte remodeling leads to age-dependent cardiac dysfunction and failure.
Topics: Aging; Angiotensin II; Angiotensinogen; Animals; Calcium; Calcium-Transporting ATPases; Cardiac Output, Low; Cardiomegaly; Cardiomyopathy, Dilated; Male; Mice; Mice, Transgenic; Myocardial Contraction; Myocardium; Myocytes, Cardiac; Myosin Heavy Chains; Phenotype; Promoter Regions, Genetic; Rats; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Ventricular Remodeling | 2005 |
Vascular but not cardiac remodeling is associated with superoxide production in angiotensin II hypertension.
Topics: Angiotensin II; Animals; Endothelium, Vascular; Hypertension; Luminescent Measurements; Male; Mesenteric Arteries; NADPH Oxidases; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Oxygen; Phosphoric Monoester Hydrolases; Rats; Rats, Sprague-Dawley; Superoxides; Vasoconstrictor Agents; Ventricular Remodeling | 2005 |
Type VI collagen induces cardiac myofibroblast differentiation: implications for postinfarction remodeling.
Topics: Angiotensin II; Animals; Cell Differentiation; Cell Proliferation; Cells, Cultured; Collagen Type I; Collagen Type III; Collagen Type VI; Coronary Vessels; Extracellular Matrix; Fibroblasts; Fibrosis; Ligation; Male; Myocardial Infarction; Rats; Rats, Sprague-Dawley; Ventricular Remodeling | 2006 |
In vitro inhibitory effects of atorvastatin on cardiac fibroblasts: implications for ventricular remodelling.
Topics: Angiotensin II; Animals; Atorvastatin; Cells, Cultured; Collagen; Connective Tissue Growth Factor; Dose-Response Relationship, Drug; Extracellular Matrix; Fibroblasts; Heart; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Immediate-Early Proteins; Intercellular Signaling Peptides and Proteins; Myocardium; Procollagen; Pyrroles; Rats; Transforming Growth Factor beta; Transforming Growth Factor beta1; Ventricular Remodeling | 2005 |
Angiotensin II AT1 receptor density on blood platelets predicts early left ventricular remodelling in non-reperfused acute myocardial infarction in humans.
Topics: Aged; Angiotensin II; Blood Platelets; Cholesterol, LDL; Diabetes Complications; Echocardiography; Female; Humans; Male; Middle Aged; Myocardial Infarction; Predictive Value of Tests; Radioligand Assay; Receptor, Angiotensin, Type 1; Regression Analysis; Stroke Volume; Ventricular Function, Left; Ventricular Remodeling | 2006 |
[Identification of up-regulated genes induced by angiotensin II in cardiac fibroblasts].
Topics: Angiotensin II; Animals; Cells, Cultured; DNA, Complementary; Expressed Sequence Tags; Fibroblasts; Gene Expression Regulation; Male; Myocardium; Rats; Rats, Sprague-Dawley; Up-Regulation; Ventricular Remodeling | 2005 |
Angiotensin preconditioning of the heart: evidence for redox signaling.
Topics: Acetophenones; Acetylcysteine; Angiotensin II; Animals; Antioxidants; Apoptosis; Gene Expression; Heart; Heart Rate; In Vitro Techniques; Ischemic Preconditioning, Myocardial; Male; Membrane Glycoproteins; Membrane Transport Proteins; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Myocytes, Cardiac; NADPH Oxidase 2; NADPH Oxidases; Oxidation-Reduction; Perfusion; Phosphoproteins; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Ventricular Function, Left; Ventricular Remodeling | 2006 |
ANG II-induced cardiac molecular and cellular events: role of aldosterone.
Topics: Aldosterone; Angiotensin II; Animals; Cells, Cultured; Dose-Response Relationship, Drug; Inflammation Mediators; Macrophage Activation; Male; Myocytes, Cardiac; Oxidative Stress; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Ventricular Remodeling | 2006 |
Cardiac remodeling and angiotensin II-forming enzyme activity of the left ventricle in hamsters with chronic pressure overload induced by ascending aortic stenosis.
Topics: Angiotensin II; Animals; Aortic Valve Stenosis; Body Weight; Chymases; Cricetinae; Disease Models, Animal; Dog Diseases; Dogs; Echocardiography; Heart Failure; Heart Ventricles; Histocytochemistry; Male; Mesocricetus; Myocardium; Organ Size; Peptidyl-Dipeptidase A; Serine Endopeptidases; Ventricular Remodeling | 2006 |
Effect of peroxisome proliferator-activated receptor gamma ligand. Rosiglitazone on left ventricular remodeling in rats with myocardial infarction.
Topics: Angiotensin II; Animals; Blood Glucose; Body Weight; Collagen; Insulin; Ligands; Liver; Lung; Male; Mineralocorticoid Receptor Antagonists; Myocardial Infarction; Myocardium; Organ Size; PPAR gamma; Rats; Rats, Sprague-Dawley; Rosiglitazone; Thiazolidinediones; Ventricular Remodeling | 2006 |
Upregulated neurohumoral factors are associated with left ventricular remodeling and poor prognosis in rats with monocrotaline-induced pulmonary arterial hypertension.
Topics: Angiotensin II; Animals; Hypertension, Pulmonary; Hypertrophy, Left Ventricular; Male; Monocrotaline; Natriuretic Peptide, Brain; Norepinephrine; Prognosis; Rats; Rats, Wistar; Up-Regulation; Ventricular Remodeling | 2006 |
Angiotensin II, oxidative stress, and extracellular matrix degradation during transition to LV failure in rats with hypertension.
Topics: Angiotensin II; Animals; Base Sequence; Enzyme Activation; Extracellular Matrix; Heart Failure; Hypertension; Male; Matrix Metalloproteinases; Microscopy, Electron, Scanning; NADH, NADPH Oxidoreductases; NF-kappa B; Oxidative Stress; Rats; Rats, Inbred Dahl; RNA, Messenger; Ventricular Remodeling | 2006 |
What is the role of angiotensin-receptor blockade in cardiovascular protection?
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Cardiovascular Diseases; Clinical Trials as Topic; Diabetes Mellitus; Endothelium, Vascular; Humans; Kidney Diseases; Pilot Projects; Renin-Angiotensin System; Research Design; Vascular Diseases; Ventricular Remodeling | 2006 |
Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7).
Topics: Analysis of Variance; Angiotensin I; Angiotensin II; Animals; Blood Pressure; Cardiomegaly; Disease Models, Animal; Fibrosis; Heart; Hypertension; Male; Myocardium; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, G-Protein-Coupled; Time Factors; Transforming Growth Factor beta; Ventricular Remodeling | 2007 |
Undernutrition in utero augments systolic blood pressure and cardiac remodeling in adult mouse offspring: possible involvement of local cardiac angiotensin system in developmental origins of cardiovascular disease.
Topics: Angiotensin II; Animals; Blood Pressure; Cardiovascular Diseases; Female; Fetal Nutrition Disorders; Heart Ventricles; Leptin; Malnutrition; Mice; Mice, Inbred C57BL; Nitric Oxide; Pregnancy; Prenatal Exposure Delayed Effects; Renin-Angiotensin System; Sodium Glutamate; Ventricular Remodeling | 2007 |
Pressure overload-induced transient oxidative stress mediates perivascular inflammation and cardiac fibrosis through angiotensin II.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Benzimidazoles; Biphenyl Compounds; Fibrosis; Heart Ventricles; Hypertension; Inflammation; Male; Oxidative Stress; Rats; Rats, Wistar; Reactive Oxygen Species; Tetrazoles; Time Factors; Ventricular Remodeling | 2006 |
Adapter molecule DOC-2 is differentially expressed in pressure and volume overload hypertrophy and inhibits collagen synthesis in cardiac fibroblasts.
Topics: Adaptor Proteins, Signal Transducing; Adaptor Proteins, Vesicular Transport; Angiotensin II; Animals; Aorta, Abdominal; Arteriovenous Shunt, Surgical; Cardiomegaly; Cells, Cultured; Collagen; Disease Models, Animal; Extracellular Signal-Regulated MAP Kinases; Fibroblasts; Flavonoids; Gene Expression; Ligation; Myocytes, Cardiac; Phorbol Esters; Phosphorylation; Protein Kinase C; Protein Kinase Inhibitors; Rats; Rats, Sprague-Dawley; RNA, Messenger; Signal Transduction; Transfection; Ventricular Remodeling | 2007 |
Effect of high salt intake on local renin-angiotensin system and ventricular dysfunction following myocardial infarction in rats.
Topics: Angiotensin II; Animals; Blotting, Western; Body Weight; Enzyme-Linked Immunosorbent Assay; Heart; Male; Myocardial Contraction; Myocardial Infarction; Peptidyl-Dipeptidase A; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Renin; Renin-Angiotensin System; Sodium Chloride, Dietary; Time Factors; Ventricular Dysfunction; Ventricular Function, Left; Ventricular Pressure; Ventricular Remodeling | 2007 |
Contribution of different Nox homologues to cardiac remodeling in two-kidney two-clip renovascular hypertensive rats: effect of valsartan.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Antihypertensive Agents; Aorta; Blood Pressure; Cardiomegaly; Disease Models, Animal; Fibrosis; Heart Ventricles; Hypertension, Renovascular; Ligation; Male; Malondialdehyde; Membrane Glycoproteins; NADH, NADPH Oxidoreductases; NADPH Oxidase 1; NADPH Oxidase 2; NADPH Oxidase 4; NADPH Oxidases; Rats; Rats, Sprague-Dawley; Renal Artery; Superoxides; Tetrazoles; Valine; Valsartan; Ventricular Function, Left; Ventricular Remodeling | 2007 |
Olmesartan is an angiotensin II receptor blocker with an inhibitory effect on angiotensin-converting enzyme.
Topics: Aldosterone; Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Pressure; Gene Expression; Imidazoles; Male; Myocardium; Nitrates; Nitrites; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Renin; Tetrazoles; Ventricular Remodeling | 2006 |
Influence of transplantation of allogenic bone marrow mononuclear cells on the left ventricular remodeling of rat after acute myocardial infarction.
Topics: Angiotensin II; Animals; Bone Marrow Transplantation; Collagen Type I; Disease Models, Animal; Leukocytes, Mononuclear; Male; Myocardial Infarction; Osteopontin; Rats; Rats, Wistar; Ventricular Remodeling | 2006 |
Ventricular unloading, tissue angiotensin II, matrix modulation, and function during left ventricular assist device support.
Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Extracellular Matrix; Female; Forecasting; Heart Failure; Heart-Assist Devices; Humans; Male; Matrix Metalloproteinase 1; Risk Assessment; Sensitivity and Specificity; Stroke Volume; Survival Analysis; Ventricular Remodeling | 2007 |
Beta-catenin downregulation is required for adaptive cardiac remodeling.
Topics: Angiotensin II; Animals; beta Catenin; Cardiomegaly; Gene Expression Regulation; Insulin-Like Growth Factor Binding Protein 5; Mice; Mice, Inbred C57BL; T-Box Domain Proteins; Ventricular Remodeling | 2007 |
Angiotensin II-induced sudden arrhythmic death and electrical remodeling.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensinogen; Animals; Animals, Genetically Modified; Blood Pressure; Cardiac Pacing, Artificial; Cardiomegaly; Connexin 43; Death, Sudden, Cardiac; Disease Models, Animal; Electrocardiography; Heart Conduction System; Hypertension; Losartan; Male; Myocardium; Rats; Rats, Sprague-Dawley; Renin; RNA, Messenger; Shal Potassium Channels; Tachycardia, Ventricular; Telemetry; Time Factors; Ventricular Remodeling | 2007 |
Mast cell-derived cathepsin g: a possible role in the adverse remodeling of the failing human heart.
Topics: Adult; Aged; Angiotensin II; Cardiac Output, Low; Case-Control Studies; Cathepsin G; Cathepsins; Chymases; Disease Progression; Female; Heart-Assist Devices; Humans; Male; Mast Cells; Middle Aged; Myocardium; Necrosis; Serine Endopeptidases; Tryptases; Ventricular Remodeling | 2007 |
Overexpression of myofibrillogenesis regulator-1 aggravates cardiac hypertrophy induced by angiotensin II in mice.
Topics: Angiotensin II; Animals; Atrial Natriuretic Factor; Cardiomegaly; Endomyocardial Fibrosis; Female; Gene Expression Regulation; Humans; Mice; Mice, Transgenic; Muscle Proteins; Myocardium; Natriuretic Peptide, Brain; NF-kappa B; RNA, Messenger; Signal Transduction; Vasoconstrictor Agents; Ventricular Remodeling | 2007 |
Angiotensin II-mediated oxidative stress promotes myocardial tissue remodeling in the transgenic (mRen2) 27 Ren2 rat.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Animals, Genetically Modified; Antioxidants; Blood Pressure; Cyclic N-Oxides; Lipid Peroxidation; Male; Mitochondria, Heart; NADPH Oxidases; Oxidative Stress; Protein Subunits; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Renin; Spin Labels; Tetrazoles; Valine; Valsartan; Ventricular Remodeling | 2007 |
Novel mechanisms of valsartan on the treatment of acute myocardial infarction through inhibition of the antiadhesion molecule periostin.
Topics: Acute Disease; Angiotensin II; Animals; Antihypertensive Agents; Cell Adhesion Molecules; Cell Communication; Cells, Cultured; Disease Models, Animal; Fibroblasts; Gene Expression Regulation; Male; Myocardial Infarction; Myocardium; Myocytes, Cardiac; Random Allocation; Rats; Rats, Inbred Lew; Rats, Wistar; Stress, Mechanical; Tetrazoles; Valine; Valsartan; Ventricular Remodeling | 2007 |
Local actions of atrial natriuretic peptide counteract angiotensin II stimulated cardiac remodeling.
Topics: Angiotensin II; Animals; Atrial Natriuretic Factor; Blood Pressure; Calcium Signaling; Heart; Heart Ventricles; Mice; Mice, Knockout; Organ Size; Receptors, Atrial Natriuretic Factor; RNA, Messenger; Ventricular Remodeling | 2007 |
Effects of p38 MAPK Inhibitor on angiotensin II-dependent hypertension, organ damage, and superoxide anion production.
Topics: Angiotensin II; Animals; Aorta, Abdominal; Blood Pressure; Carotid Arteries; Echocardiography; Endothelium, Vascular; Enzyme Inhibitors; Hypertension; Imidazoles; Intracellular Signaling Peptides and Proteins; Male; Membrane Glycoproteins; Mice; Mice, Knockout; Myocardium; NADPH Oxidase 2; NADPH Oxidases; p38 Mitogen-Activated Protein Kinases; Protein Kinases; Protein Serine-Threonine Kinases; Pyrimidines; Rats; Rats, Sprague-Dawley; Superoxides; Vasodilation; Ventricular Remodeling | 2007 |
Role of cardiac overexpression of ANG II in the regulation of cardiac function and remodeling postmyocardial infarction.
Topics: Angiotensin II; Animals; Blood Pressure; Collagen; Fibrosis; Gene Expression Regulation; Heart; Heart Rate; Macrophages; Male; Mice; Mice, Transgenic; Myocardial Infarction; Myocardium; Myocytes, Cardiac; Neovascularization, Pathologic; Ventricular Remodeling | 2007 |
[Comparative study on early application of the recipe for activating blood circulation and the recipe for supplementing qi for inhibiting left ventricular remodeling and apoptosis in rats with heart failure].
Topics: Angiotensin II; Animals; Apoptosis; Astragalus propinquus; Drug Combinations; Drugs, Chinese Herbal; Heart Failure; Male; Myocardial Infarction; Myocardium; Myocytes, Cardiac; Plants, Medicinal; Qi; Random Allocation; Rats; Rats, Sprague-Dawley; Salvia miltiorrhiza; Ventricular Remodeling | 2007 |
Rho kinase activation and gene expression related to vascular remodeling in normotensive rats with high angiotensin I converting enzyme levels.
Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Angiotensin II; Animals; Aorta; Blood Pressure; Chemokine CCL2; Enzyme Activation; Enzyme Inhibitors; Gene Expression Regulation, Enzymologic; Intracellular Signaling Peptides and Proteins; Male; Oxidative Stress; Peptidyl-Dipeptidase A; Plasminogen Activator Inhibitor 1; Protein Serine-Threonine Kinases; Rats; Rats, Inbred BN; Rats, Inbred Lew; rho-Associated Kinases; RNA, Messenger; Transforming Growth Factor beta1; Ventricular Remodeling | 2007 |
Anabolic steroids induce cardiac renin-angiotensin system and impair the beneficial effects of aerobic training in rats.
Topics: Anabolic Agents; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Blood Pressure; Cardiomegaly; Collagen; Gene Expression Regulation; Heart Rate; Hydroxyproline; Losartan; Male; Myocardial Contraction; Myocardium; Nandrolone; Nandrolone Decanoate; Peptidyl-Dipeptidase A; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Swimming; Testosterone; Time Factors; Ventricular Function, Left; Ventricular Remodeling | 2007 |
[Influence of daidzein on left ventricular remodeling in rats with hypertrophic myocardium induced by pressure overload].
Topics: Angiotensin II; Animals; Hypertrophy, Left Ventricular; Isoflavones; Male; Myocardium; Nitric Oxide; Phytoestrogens; Random Allocation; Rats; Rats, Wistar; Ventricular Remodeling | 2007 |
Pitavastatin, an HMG-CoA reductase inhibitor, exerts eNOS-independent protective actions against angiotensin II induced cardiovascular remodeling and renal insufficiency.
Topics: Angiotensin II; Animals; Cardiotonic Agents; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypertrophy, Left Ventricular; Mice; Mice, Inbred C57BL; Mice, Knockout; Nitric Oxide Synthase Type III; Oxidative Stress; Quinolines; Renal Insufficiency; Signal Transduction; Smad2 Protein; Smad3 Protein; Transforming Growth Factor beta; Ventricular Remodeling | 2008 |
[Influnce of Tinglizi on some neuroendocrine factors and type I and III collagen in ventricular remodeling induced by abdominal aortic banding in rats].
Topics: Aldosterone; Angiotensin II; Animals; Aorta, Abdominal; Blood Pressure; Collagen; Constriction; Drugs, Chinese Herbal; Endothelins; Hypertrophy, Left Ventricular; Immunohistochemistry; Male; Myocardium; Plants, Medicinal; Rats; Rats, Sprague-Dawley; Seeds; Ventricular Remodeling | 2007 |
Angiotensin II activates signal transducer and activators of transcription 3 via Rac1 in atrial myocytes and fibroblasts: implication for the therapeutic effect of statin in atrial structural remodeling.
Topics: Angiotensin II; Animals; Atrial Fibrillation; Cells, Cultured; Fibroblasts; Heart Atria; Humans; Losartan; Muscle Cells; Phosphorylation; rac1 GTP-Binding Protein; Rats; Rats, Wistar; Signal Transduction; Simvastatin; STAT3 Transcription Factor; Ventricular Remodeling | 2008 |
Pravastatin attenuates left ventricular remodeling and diastolic dysfunction in angiotensin II-induced hypertensive mice.
Topics: Angiotensin II; Animals; Blood Pressure; Cholesterol; Disease Models, Animal; Fibrosis; Gene Expression Regulation; Heart Failure, Diastolic; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypertension; Hypertrophy, Left Ventricular; Male; Mice; Mice, Inbred C57BL; Pravastatin; rho-Associated Kinases; Ventricular Remodeling | 2008 |
Targeting the calpain/calpastatin system as a new strategy to prevent cardiovascular remodeling in angiotensin II-induced hypertension.
Topics: Angiotensin II; Animals; Aorta; Blood Pressure; Calcium-Binding Proteins; Calpain; Cysteine Proteinase Inhibitors; Disease Models, Animal; Fibrosis; Genetic Therapy; Hypertension; Hypertrophy; Hypertrophy, Left Ventricular; Inflammation; Infusion Pumps, Implantable; Mice; Mice, Transgenic; Muscle, Smooth, Vascular; Myocardium; NF-kappa B; NFATC Transcription Factors; Renal Artery; Time Factors; Ventricular Remodeling | 2008 |
Loss of PTEN attenuates the development of pathological hypertrophy and heart failure in response to biomechanical stress.
Topics: Angiogenic Proteins; Angiotensin II; Animals; Aorta, Thoracic; Apoptosis; Blotting, Western; Constriction; Disease Models, Animal; Disease Progression; Energy Metabolism; Fibrosis; Heart Failure; Hypertrophy, Left Ventricular; Male; Mechanotransduction, Cellular; Mice; Mice, Knockout; Mitogen-Activated Protein Kinases; Myocardium; Neovascularization, Physiologic; Phosphorylation; PTEN Phosphohydrolase; Reverse Transcriptase Polymerase Chain Reaction; Stress, Mechanical; Ventricular Function, Left; Ventricular Remodeling | 2008 |
Integrative control of coronary resistance vessel tone by endothelin and angiotensin II is altered in swine with a recent myocardial infarction.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Biphenyl Compounds; Coronary Circulation; Coronary Vessels; Disease Models, Animal; Endothelin A Receptor Antagonists; Endothelin B Receptor Antagonists; Endothelins; Hemodynamics; Irbesartan; Myocardial Infarction; Oxygen; Physical Exertion; Pyridines; Receptor, Angiotensin, Type 1; Receptor, Endothelin A; Receptor, Endothelin B; Swine; Tetrazoles; Time Factors; Vascular Resistance; Vasoconstriction; Vasodilation; Ventricular Function, Left; Ventricular Remodeling | 2008 |
Long-term but not short-term p38 mitogen-activated protein kinase inhibition improves cardiac function and reduces cardiac remodeling post-myocardial infarction.
Topics: Actins; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Pressure; Cells, Cultured; Collagen; Heat-Shock Proteins; HSP27 Heat-Shock Proteins; Imidazoles; Myocardial Infarction; Myocytes, Cardiac; Neoplasm Proteins; Organ Size; p38 Mitogen-Activated Protein Kinases; Protein Kinase Inhibitors; Pyridines; Ramipril; Rats; Rats, Sprague-Dawley; Tumor Necrosis Factor-alpha; Ventricular Dysfunction, Left; Ventricular Remodeling | 2008 |
Angiotensin II blockade followed by growth hormone as adjunctive therapy after experimental myocardial infarction.
Topics: Angiotensin II; Angiotensin Receptor Antagonists; Animals; Anti-Arrhythmia Agents; Blood Flow Velocity; Body Weight; Diastole; Drug Therapy, Combination; Echocardiography; Female; Growth Hormone; Hemodynamics; Hypertrophy, Left Ventricular; Kidney; Liver; Losartan; Myocardial Infarction; Myocardium; Organ Size; Random Allocation; Rats; Rats, Sprague-Dawley; Spleen; Ventricular Function, Left; Ventricular Remodeling | 1998 |
Effects of long-term angiotensin II AT1 receptor blockade on survival, hemodynamics and cardiac remodeling in chronic heart failure in rats.
Topics: Analysis of Variance; Angiotensin II; Angiotensin Receptor Antagonists; Animals; Antihypertensive Agents; Biphenyl Compounds; Dose-Response Relationship, Drug; Heart Failure; Heart Rate; Irbesartan; Male; Rats; Rats, Wistar; Survival Rate; Tetrazoles; Vascular Resistance; Ventricular Pressure; Ventricular Remodeling | 1999 |
Communication between myocytes and fibroblasts in cardiac remodeling in angiotensin chimeric mice.
Topics: Angiotensin II; Animals; Cell Communication; Chimera; Female; Fibroblasts; Fibrosis; Genes, Reporter; Lac Operon; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Myocardium; Receptor, Angiotensin, Type 1; Receptors, Angiotensin; Ventricular Remodeling | 1999 |
Angiotensin II promotes integrin-mediated collagen gel contraction by adult rat cardiac fibroblasts.
Topics: Angiotensin II; Animals; Collagen; Extracellular Matrix; Fibroblasts; Fibronectins; Flow Cytometry; Immunohistochemistry; Integrins; Laminin; Myocardium; Osteopontin; Rats; Rats, Sprague-Dawley; RNA, Messenger; Sialoglycoproteins; Ventricular Remodeling | 1999 |
Chronic antisense therapy for angiotensinogen on cardiac hypertrophy in spontaneously hypertensive rats.
Topics: Analysis of Variance; Angiotensin II; Angiotensinogen; Animals; Cardiomegaly; Gene Expression; Genetic Therapy; Injections, Intravenous; Liver; Male; Myocardium; Oligodeoxyribonucleotides, Antisense; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, Angiotensin; RNA, Messenger; Ventricular Remodeling | 1999 |
Potential contribution of a novel antifibrotic factor, hepatocyte growth factor, to prevention of myocardial fibrosis by angiotensin II blockade in cardiomyopathic hamsters.
Topics: Angiotensin II; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Cardiomyopathies; Cells, Cultured; Collagen; Cricetinae; Extracellular Matrix; Fibroblasts; Fibrosis; Hepatocyte Growth Factor; Humans; Imidazoles; In Vitro Techniques; Male; Matrix Metalloproteinase 1; Muscle Fibers, Skeletal; Myocardium; Olmesartan Medoxomil; Rats; Tetrazoles; Thiazepines; Ventricular Remodeling | 2000 |
Reverse remodeling of cardiac myocyte hypertrophy in hypertension and failure by targeting of the renin-angiotensin system.
Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Cardiomegaly; Echocardiography; Enalapril; Female; Heart Failure; Hypertension, Renal; Imidazoles; Muscle Fibers, Skeletal; Myocardium; Organ Size; Rats; Rats, Inbred Strains; Renin-Angiotensin System; Tetrazoles; Ventricular Remodeling | 2000 |
Cardioprotective mechanism of ischemic preconditioning is impaired by postinfarct ventricular remodeling through angiotensin II type 1 receptor activation.
Topics: Angiotensin II; Animals; Ischemic Preconditioning; Male; Myocardial Infarction; Rabbits; Receptors, Angiotensin; Signal Transduction; Ventricular Remodeling | 2000 |
Effects of ACE inhibitor, AT1 antagonist, and combined treatment in mice with heart failure.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Cardiac Output; Chronic Disease; Echocardiography; Female; Heart; Heart Failure; Imidazoles; Male; Mice; Mice, Inbred C57BL; Myocardial Infarction; Myocardium; Organ Size; Ramipril; Stroke Volume; Tetrazoles; Ventricular Remodeling | 2000 |
Effects of TCV-116 on endothelin-1 and PDGF A-chain expression in angiotensin II-induced hypertensive rats.
Topics: Angiotensin II; Angiotensin Receptor Antagonists; Animals; Antihypertensive Agents; Benzimidazoles; Biphenyl Compounds; Blotting, Western; Body Weight; Collagen; Endothelin Receptor Antagonists; Endothelin-1; Heart Ventricles; Hemodynamics; Hypertension; Male; Organ Size; Platelet-Derived Growth Factor; Rats; Rats, Inbred WKY; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptor, Endothelin A; Receptors, Endothelin; Reverse Transcriptase Polymerase Chain Reaction; Tetrazoles; Ventricular Remodeling | 2001 |
Antihypertensive drugs induce structural remodeling of the penile vasculature.
Topics: Angiotensin II; Animals; Antihypertensive Agents; Enalapril; Hydralazine; Male; Methoxamine; Penis; Rats; Rats, Inbred SHR; Renin-Angiotensin System; Vascular Resistance; Vasoconstrictor Agents; Vasodilator Agents; Vasopressins; Ventricular Remodeling | 2001 |
Relationship between plasma level of cardiotrophin-1 and left ventricular mass index in patients with dilated cardiomyopathy.
Topics: Adolescent; Adult; Aged; Angiotensin II; Cardiomyopathy, Dilated; Case-Control Studies; Cytokines; Female; Heart Failure; Hemodynamics; Humans; Hypertrophy, Left Ventricular; Linear Models; Male; Middle Aged; Multivariate Analysis; Norepinephrine; Predictive Value of Tests; Radioimmunoassay; Severity of Illness Index; Signal Transduction; Stroke Volume; Ventricular Remodeling | 2001 |
Blockade of angiotensin II type 1 receptors suppressed free radical production and preserved coronary endothelial function in the rabbit heart after myocardial infarction.
Topics: Acetylcholine; Angiotensin II; Angiotensin Receptor Antagonists; Animals; Endothelium, Vascular; Enzyme Inhibitors; Free Radicals; Hemodynamics; In Vitro Techniques; Lipid Peroxides; Male; Myocardial Infarction; Myocardium; Nitroprusside; omega-N-Methylarginine; Oxygen; Rabbits; Receptor, Angiotensin, Type 1; Tetrazoles; Tiopronin; Valine; Valsartan; Vasodilator Agents; Ventricular Remodeling | 2002 |
Left ventricular structure and diastolic function in subjects with two hypertensive parents.
Topics: Adolescent; Adult; Aldosterone; Angiotensin II; Blood Pressure; Case-Control Studies; Catecholamines; Electrocardiography; Family Health; Female; Humans; Hypertension; Insulin Resistance; Male; Parents; Renin; Ventricular Dysfunction, Left; Ventricular Remodeling | 2001 |
Cardiovascular influences of alpha1b-adrenergic receptor defect in mice.
Topics: Angiotensin II; Animals; Aorta; Arterioles; Atrial Natriuretic Factor; Blood Pressure; Cardiomegaly; Cardiovascular System; Echocardiography; Heart Rate; Heart Ventricles; Hypertension; Male; Mesentery; Mice; Mice, Transgenic; Norepinephrine; Organ Size; Phenylephrine; Receptors, Adrenergic, alpha-1; RNA, Messenger; Vasoconstrictor Agents; Ventricular Remodeling | 2002 |
Angiotensin II receptor blockade does not improve left ventricular function and remodeling in subacute mitral regurgitation in the dog.
Topics: Alabama; Angiotensin I; Angiotensin II; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Body Weight; Chymases; Disease Models, Animal; Dogs; Female; Heart Ventricles; Hemodynamics; Male; Mitral Valve Insufficiency; Receptor, Angiotensin, Type 1; Renin; Serine Endopeptidases; Treatment Outcome; Ventricular Function, Left; Ventricular Remodeling | 2002 |
Involvement of Rho-kinase pathway for angiotensin II-induced plasminogen activator inhibitor-1 gene expression and cardiovascular remodeling in hypertensive rats.
Topics: Amides; Angiotensin II; Animals; Benzimidazoles; Biphenyl Compounds; Body Weight; Hemodynamics; Hypertension; Intracellular Signaling Peptides and Proteins; Male; Mitogen-Activated Protein Kinases; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Organ Size; Plasminogen Activator Inhibitor 1; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins c-fos; Pyridines; Rats; Rats, Inbred WKY; rho-Associated Kinases; rhoA GTP-Binding Protein; Ribosomal Protein S6 Kinases; RNA, Messenger; Tetrazoles; Ventricular Remodeling | 2002 |
[Bradykinin and ventricular function].
Topics: Angiotensin II; Blood Pressure; Bradykinin; Humans; Myocardial Ischemia; Ventricular Function; Ventricular Remodeling | 2002 |
Krüppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling.
Topics: Angiotensin II; Animals; Blood Vessels; Cells, Cultured; Collagen Type IV; Dibenzazepines; Digestive System; Digestive System Physiological Phenomena; Female; Genes, Reporter; Humans; Kruppel-Like Transcription Factors; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; Neoplasm Transplantation; Neovascularization, Physiologic; Platelet-Derived Growth Factor; Rats; Recombinant Fusion Proteins; Retinoids; Signal Transduction; Trans-Activators; Ventricular Remodeling; Zinc Fingers | 2002 |