angiotensin ii, des-phe(8)- has been researched along with Insulin Sensitivity in 29 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (6.90) | 29.6817 |
2010's | 23 (79.31) | 24.3611 |
2020's | 4 (13.79) | 2.80 |
Authors | Studies |
---|---|
Echeverría-Rodríguez, O; Gallardo-Ortíz, IA; Villalobos-Molina, R | 2 |
Arnold, AC; Bingaman, SS; Medina, D; Mehay, D; Miller, AJ | 1 |
Cao, X; Liu, JY; Shi, TT; Song, LN; Xin, Z; Yang, JK; Zhang, YC | 1 |
Chen, S; Gu, T; Li, Y; Ren, L; Wang, C; Yang, Y; Zheng, H | 1 |
Barbosa-da-Silva, S; de Oliveira Fraga, SR; de Oliveira Sá, G; Dos Santos Neves, V; Souza-Mello, V | 1 |
Deng, H; Gao, F; Huang, C; Li, W; Ma, X; Wang, S; Wang, Y; Xuan, X; Yuan, L | 1 |
Graus-Nunes, F; Souza-Mello, V | 1 |
Américo, ALV; Evangelista, FS; Fonseca-Alaniz, MH; Martucci, LF; Muller, CR; Vecchiatto, B | 1 |
Arnold, AC; Bingaman, SS; Lindsey, SH; Loloi, J; Miller, AJ; Shen, B; Silberman, Y; Wang, M; White, MC | 1 |
Andreozzi, F; Carnevale, D; Casaburo, M; Hribal, ML; Perticone, F; Perticone, M; Presta, I; Sciacqua, A; Sesti, G; Tassone, EJ | 1 |
Alvarez-Leite, JI; Andrade, JM; Feltenberger, JD; Fernandes, LR; Santos, RA; Santos, SH; Sinisterra, RD; Sousa, FB | 1 |
Del Valle-Mondragón, L; Echeverría-Rodríguez, O; Hong, E | 1 |
Karpe, PA; Tikoo, K | 1 |
Abo Alrob, O; Altamimi, T; Basu, R; Desaulniers, J; Kassiri, Z; Lopaschuk, GD; Mori, J; Oudit, GY; Patel, VB; Wagg, CS | 1 |
Burghi, V; Dominici, FP; Giani, JF; Muñoz, MC | 1 |
Campagnole-Santos, MJ; de Paula, AM; dos Santos, RA; Ferreira, AV; Garcia, ZM; Guimarães, AL; Oliveira Andrade, JM; Paraíso, AF; Santos, SH; Sinisterra, RD; Sousa, FB | 1 |
Fan, X; Fan, Y; He, J; Li, X; Wang, L; Wang, W; Wu, H; Yang, H; Yang, Z | 1 |
Bader, M; Barkhausen, J; Raasch, W; Santos, RA; Schuchard, J; Schuster, F; Stölting, I; Thorns, C; Vogt, FM; Winkler, M | 1 |
Basu, R; Das, SK; Grant, MB; Lopaschuk, GD; McLean, BA; Mori, J; Oudit, GY; Parajuli, N; Patel, VB; Penninger, JM; Ramprasath, T | 1 |
Arnold, AC; Biaggioni, I; Bracy, DP; Otero, YF; Wasserman, DH; Williams, IM | 1 |
Berg, S; Dombrowski, F; Döring, P; Drews, G; Gürtler, S; Krippeit-Drews, P; Lendeckel, U; Maczewsky, J; Sahr, A; Tetzner, A; van den Brandt, J; Venz, S; Walther, T; Wolke, C | 1 |
Bindom, SM; Lazartigues, E | 1 |
Dominici, FP; Giani, JF; Gironacci, MM; Höcht, C; Mayer, MA; Muñoz, MC; Silberman, EA; Taira, CA; Turyn, D | 1 |
Arranz, C; Dominici, FP; Giani, JF; Mayer, MA; Muñoz, MC; Taira, CA; Toblli, JE; Turyn, D; Veiras, LC | 1 |
Cao, X; Li, HX; Liu, C; Lv, XH; Wang, L; Yang, JK; Yu, M; Zhang, F | 1 |
Burghi, V; Carranza, A; Dominici, FP; Giani, JF; Mayer, MA; Muñoz, MC; Taira, CA | 1 |
Hanasaki-Yamamoto, H; Hongyo, K; Kamide, K; Kawai, T; Oguro, R; Ohishi, M; Rakugi, H; Sugimoto, K; Takami, Y; Takeda, M; Takemura, Y; Takeshita, H; Takeya, Y; Tatara, Y; Yamamoto, K | 1 |
Adler, GK; Underwood, PC | 1 |
4 review(s) available for angiotensin ii, des-phe(8)- and Insulin Sensitivity
Article | Year |
---|---|
The renin-angiotensin system as a target to solve the riddle of endocrine pancreas homeostasis.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Drug Delivery Systems; Homeostasis; Humans; Insulin Resistance; Islets of Langerhans; Peptide Fragments; Renin-Angiotensin System | 2019 |
Modulation of the action of insulin by angiotensin-(1-7).
Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Diabetes Mellitus, Type 2; Humans; Hypoglycemic Agents; Insulin; Insulin Resistance; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Signal Transduction | 2014 |
The sweeter side of ACE2: physiological evidence for a role in diabetes.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Diabetes Mellitus; Humans; Insulin Resistance; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Renin-Angiotensin System | 2009 |
The renin angiotensin aldosterone system and insulin resistance in humans.
Topics: Adipose Tissue; Aldosterone; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Angiotensinogen; Animals; Blood Pressure; Glucose; Hemodynamics; Humans; Insulin Resistance; Models, Animal; Muscle, Skeletal; Obesity; Peptide Fragments; Peptidyl-Dipeptidase A; Renin-Angiotensin System | 2013 |
25 other study(ies) available for angiotensin ii, des-phe(8)- and Insulin Sensitivity
Article | Year |
---|---|
Potential role of angiotensin-(1-7) in the improvement of vascular insulin sensitivity after a bout of exercise.
Topics: Angiotensin I; Animals; Insulin; Insulin Resistance; Male; Peptide Fragments; Rats; Rats, Wistar; Renin-Angiotensin System; Vasodilation | 2020 |
Angiotensin-(1-7) Improves Integrated Cardiometabolic Function in Aged Mice.
Topics: Aging; Angiotensin I; Animals; Antihypertensive Agents; Blood Pressure; Glucose; Hypertension; Insulin; Insulin Resistance; Male; Mice, Inbred C57BL; Peptide Fragments; Renin-Angiotensin System | 2020 |
Angiotensin-(1-7), the product of ACE2 ameliorates NAFLD by acting through its receptor Mas to regulate hepatic mitochondrial function and glycolipid metabolism.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Cell Line, Tumor; Down-Regulation; Glycolipids; Hep G2 Cells; Humans; Insulin Resistance; Lipid Metabolism; Liver; Male; Mice; Mice, Inbred C57BL; Mitochondria; Non-alcoholic Fatty Liver Disease; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Signal Transduction | 2020 |
Longdan Xiegan Tang attenuates liver injury and hepatic insulin resistance by regulating the angiotensin-converting enzyme 2/Ang (1-7)/Mas axis-mediated anti-inflammatory pathway in rats.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Anti-Inflammatory Agents; Chemical and Drug Induced Liver Injury; Cytokines; Drugs, Chinese Herbal; Fasting; I-kappa B Kinase; Insulin Resistance; Liver; Male; NF-kappa B; Olanzapine; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled | 2021 |
High-intensity interval training has beneficial effects on cardiac remodeling through local renin-angiotensin system modulation in mice fed high-fat or high-fructose diets.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Diet, High-Fat; Fructose; Gene Expression Regulation; High-Intensity Interval Training; Hypertension; Hypertrophy, Left Ventricular; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Peptide Fragments; Peptidyl-Dipeptidase A; Random Allocation; Receptor, Angiotensin, Type 2; Renin; Renin-Angiotensin System; Ventricular Remodeling | 2017 |
Activation of ACE2/angiotensin (1-7) attenuates pancreatic β cell dedifferentiation in a high-fat-diet mouse model.
Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Cell Dedifferentiation; Cell Lineage; Diet, High-Fat; Glucose Intolerance; Insulin; Insulin Resistance; Insulin Secretion; Insulin-Secreting Cells; Male; Mice; Mice, Inbred C57BL; Peptide Fragments; Peptidyl-Dipeptidase A; Weight Gain | 2018 |
Aerobic exercise training prevents obesity and insulin resistance independent of the renin angiotensin system modulation in the subcutaneous white adipose tissue.
Topics: Adipose Tissue, White; Adiposity; Angiotensin I; Angiotensin II; Animals; Biomarkers; Body Weight; Feeding Behavior; Glucose; Insulin Resistance; Male; Mice, Inbred C57BL; Obesity; Peptide Fragments; Peptides; Physical Conditioning, Animal; Renin-Angiotensin System; RNA, Messenger; Subcutaneous Fat; Thermogenesis; Uncoupling Protein 1 | 2019 |
Sex differences in metabolic effects of angiotensin-(1-7) treatment in obese mice.
Topics: Angiotensin I; Animals; Diet, High-Fat; Energy Metabolism; Female; Glucose Intolerance; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Obesity; Peptide Fragments; Sex Characteristics | 2019 |
Angiotensin (1-7) counteracts the negative effect of angiotensin II on insulin signalling in HUVECs.
Topics: Angiotensin I; Angiotensin II; Animals; Cells, Cultured; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Enzyme Activation; Human Umbilical Vein Endothelial Cells; Humans; Insulin; Insulin Receptor Substrate Proteins; Insulin Resistance; Mesenteric Arteries; Mice; Nitric Oxide; Nitric Oxide Synthase Type III; Peptide Fragments; Phosphatidylinositol 3-Kinase; Phosphorylation; Proto-Oncogene Mas; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Receptors, G-Protein-Coupled; Signal Transduction; Vasodilation | 2013 |
Oral Angiotensin-(1-7) prevented obesity and hepatic inflammation by inhibition of resistin/TLR4/MAPK/NF-κB in rats fed with high-fat diet.
Topics: Angiotensin I; Animals; Blood Glucose; Cholesterol; Diet, High-Fat; Glucose Tolerance Test; Inflammation; Insulin; Insulin Resistance; Lipoproteins, HDL; Liver; Male; Mitogen-Activated Protein Kinases; NF-kappa B; Obesity; Peptide Fragments; Rats; Rats, Sprague-Dawley; Resistin; Toll-Like Receptor 4; Triglycerides | 2013 |
Angiotensin 1-7 improves insulin sensitivity by increasing skeletal muscle glucose uptake in vivo.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Captopril; Glucose; Insulin Resistance; Male; Muscle, Skeletal; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Wistar; Renin-Angiotensin System | 2014 |
Heat shock prevents insulin resistance-induced vascular complications by augmenting angiotensin-(1-7) signaling.
Topics: AMP-Activated Protein Kinases; Angiotensin I; Animals; Diet, High-Fat; DNA (Cytosine-5-)-Methyltransferase 1; DNA (Cytosine-5-)-Methyltransferases; DNA Methylation; Hot Temperature; HSP72 Heat-Shock Proteins; Insulin Resistance; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase Type III; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Signal Transduction; Sirtuin 1; Vasodilation | 2014 |
Angiotensin 1-7 ameliorates diabetic cardiomyopathy and diastolic dysfunction in db/db mice by reducing lipotoxicity and inflammation.
Topics: Angiotensin I; Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Diastole; Echocardiography, Doppler; Follow-Up Studies; Inflammation; Insulin Resistance; Lipids; Male; Mice; Mice, Inbred C57BL; Peptide Fragments; Vasodilator Agents; Ventricular Dysfunction, Left; Ventricular Function; Ventricular Pressure | 2014 |
Cross talk between angiotensin-(1-7)/Mas axis and sirtuins in adipose tissue and metabolism of high-fat feed mice.
Topics: Administration, Oral; Angiotensin I; Animals; Antimetabolites; Cells, Cultured; Diet, High-Fat; Drug Evaluation, Preclinical; Gene Expression; Glucose Intolerance; Hyperinsulinism; Insulin Resistance; Intra-Abdominal Fat; Lipolysis; Male; Mice; Obesity; Peptide Fragments; Primary Cell Culture; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Resistin; Resveratrol; Sirtuins; Stilbenes | 2014 |
Regulation of insulin sensitivity, insulin production, and pancreatic β cell survival by angiotensin-(1-7) in a rat model of streptozotocin-induced diabetes mellitus.
Topics: Angiotensin I; Animals; Apoptosis Regulatory Proteins; Cell Survival; Diabetes Mellitus, Experimental; Disease Models, Animal; Hypoglycemic Agents; Insulin; Insulin Resistance; Insulin Secretion; Insulin-Secreting Cells; Male; Peptide Fragments; Rats; Rats, Wistar | 2015 |
Lack of weight gain after angiotensin AT1 receptor blockade in diet-induced obesity is partly mediated by an angiotensin-(1-7)/Mas-dependent pathway.
Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Animals, Genetically Modified; Benzimidazoles; Benzoates; Diet; Energy Intake; Energy Metabolism; Insulin Resistance; Leptin; Male; Obesity; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Receptors, G-Protein-Coupled; Signal Transduction; Telmisartan; Weight Gain; Weight Loss | 2015 |
ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity.
Topics: Adiponectin; Adipose Tissue; AMP-Activated Protein Kinases; Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Blood Glucose; Blotting, Western; Diet, High-Fat; Enzyme-Linked Immunosorbent Assay; Glucose Intolerance; Heart; Heart Failure; Humans; Inflammation; Insulin Resistance; Macrophages; Mice; Mice, Knockout; Myocardium; Obesity; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Pericardium; Phosphorylation; Real-Time Polymerase Chain Reaction; Stroke Volume; Tumor Necrosis Factor-alpha; Vasodilator Agents; Weight Gain | 2016 |
Does exercise increase insulin sensitivity through angiotensin 1-7?
Topics: Angiotensin I; Exercise; Humans; Hyperinsulinism; Insulin Resistance; Peptide Fragments | 2016 |
Chronic Angiotensin-(1-7) Improves Insulin Sensitivity in High-Fat Fed Mice Independent of Blood Pressure.
Topics: Analysis of Variance; Angiotensin I; Animals; Blood Glucose; Blood Pressure Determination; Body Composition; Cardiovascular Diseases; Diet, High-Fat; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Glucose Clamp Technique; Heart Function Tests; Hemodynamics; Hypertension; Infusions, Subcutaneous; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Obesity; Peptide Fragments; Random Allocation; Reference Values; Renin-Angiotensin System | 2016 |
The Angiotensin-(1-7)/Mas Axis Improves Pancreatic β-Cell Function in Vitro and in Vivo.
Topics: Angiotensin I; Animals; Cyclic AMP; Homeodomain Proteins; Insulin; Insulin Resistance; Insulin Secretion; Insulin-Secreting Cells; Maf Transcription Factors, Large; Mice; Mice, Knockout; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Signal Transduction; Trans-Activators | 2016 |
Chronic infusion of angiotensin-(1-7) improves insulin resistance and hypertension induced by a high-fructose diet in rats.
Topics: Adipose Tissue; Angiotensin I; Animals; Diet; Drug Evaluation, Preclinical; Fructose; Glucose Tolerance Test; Hypertension; Infusion Pumps; Insulin; Insulin Resistance; Liver; Male; Muscle, Skeletal; Peptide Fragments; Rats; Rats, Sprague-Dawley; Signal Transduction; Time Factors | 2009 |
Angiotensin-(1-7) improves cardiac remodeling and inhibits growth-promoting pathways in the heart of fructose-fed rats.
Topics: Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Blood Pressure; Dietary Carbohydrates; Disease Models, Animal; Fructose; Hypertension; Hypertrophy, Left Ventricular; Insulin; Insulin Resistance; Male; Peptide Fragments; Protein Tyrosine Phosphatase, Non-Receptor Type 6; Rats; Rats, Sprague-Dawley; Ventricular Remodeling | 2010 |
Angiotensin-(1-7) suppresses oxidative stress and improves glucose uptake via Mas receptor in adipocytes.
Topics: 3T3-L1 Cells; Adipocytes; Adiponectin; Angiotensin I; Animals; Cells, Cultured; Gene Expression; Glucose; Insulin Resistance; Male; Mice; NADPH Oxidases; Oxidative Stress; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Reactive Oxygen Species; Receptors, G-Protein-Coupled; RNA, Messenger | 2012 |
The Mas receptor mediates modulation of insulin signaling by angiotensin-(1-7).
Topics: Adipose Tissue; Angiotensin I; Angiotensin II; Animals; Blood Pressure; Dyslipidemias; Fructose; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; GTPase-Activating Proteins; Hypertension; Insulin; Insulin Resistance; Liver; Male; Muscle, Skeletal; Peptide Fragments; Phosphorylation; Proto-Oncogene Mas; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Signal Transduction | 2012 |
Loss of ACE2 exaggerates high-calorie diet-induced insulin resistance by reduction of GLUT4 in mice.
Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Diet, High-Fat; Dietary Carbohydrates; Energy Intake; Glucose; Glucose Intolerance; Glucose Transporter Type 4; Homeostasis; Insulin Resistance; MEF2 Transcription Factors; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle, Skeletal; Myoblasts; Myogenic Regulatory Factors; Peptide Fragments; Peptidyl-Dipeptidase A | 2013 |