Page last updated: 2024-09-03

angiotensin ii, des-phe(8)- and Insulin Sensitivity

angiotensin ii, des-phe(8)- has been researched along with Insulin Sensitivity in 29 studies

Research

Studies (29)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (6.90)29.6817
2010's23 (79.31)24.3611
2020's4 (13.79)2.80

Authors

AuthorsStudies
Echeverría-Rodríguez, O; Gallardo-Ortíz, IA; Villalobos-Molina, R2
Arnold, AC; Bingaman, SS; Medina, D; Mehay, D; Miller, AJ1
Cao, X; Liu, JY; Shi, TT; Song, LN; Xin, Z; Yang, JK; Zhang, YC1
Chen, S; Gu, T; Li, Y; Ren, L; Wang, C; Yang, Y; Zheng, H1
Barbosa-da-Silva, S; de Oliveira Fraga, SR; de Oliveira Sá, G; Dos Santos Neves, V; Souza-Mello, V1
Deng, H; Gao, F; Huang, C; Li, W; Ma, X; Wang, S; Wang, Y; Xuan, X; Yuan, L1
Graus-Nunes, F; Souza-Mello, V1
Américo, ALV; Evangelista, FS; Fonseca-Alaniz, MH; Martucci, LF; Muller, CR; Vecchiatto, B1
Arnold, AC; Bingaman, SS; Lindsey, SH; Loloi, J; Miller, AJ; Shen, B; Silberman, Y; Wang, M; White, MC1
Andreozzi, F; Carnevale, D; Casaburo, M; Hribal, ML; Perticone, F; Perticone, M; Presta, I; Sciacqua, A; Sesti, G; Tassone, EJ1
Alvarez-Leite, JI; Andrade, JM; Feltenberger, JD; Fernandes, LR; Santos, RA; Santos, SH; Sinisterra, RD; Sousa, FB1
Del Valle-Mondragón, L; Echeverría-Rodríguez, O; Hong, E1
Karpe, PA; Tikoo, K1
Abo Alrob, O; Altamimi, T; Basu, R; Desaulniers, J; Kassiri, Z; Lopaschuk, GD; Mori, J; Oudit, GY; Patel, VB; Wagg, CS1
Burghi, V; Dominici, FP; Giani, JF; Muñoz, MC1
Campagnole-Santos, MJ; de Paula, AM; dos Santos, RA; Ferreira, AV; Garcia, ZM; Guimarães, AL; Oliveira Andrade, JM; Paraíso, AF; Santos, SH; Sinisterra, RD; Sousa, FB1
Fan, X; Fan, Y; He, J; Li, X; Wang, L; Wang, W; Wu, H; Yang, H; Yang, Z1
Bader, M; Barkhausen, J; Raasch, W; Santos, RA; Schuchard, J; Schuster, F; Stölting, I; Thorns, C; Vogt, FM; Winkler, M1
Basu, R; Das, SK; Grant, MB; Lopaschuk, GD; McLean, BA; Mori, J; Oudit, GY; Parajuli, N; Patel, VB; Penninger, JM; Ramprasath, T1
Arnold, AC; Biaggioni, I; Bracy, DP; Otero, YF; Wasserman, DH; Williams, IM1
Berg, S; Dombrowski, F; Döring, P; Drews, G; Gürtler, S; Krippeit-Drews, P; Lendeckel, U; Maczewsky, J; Sahr, A; Tetzner, A; van den Brandt, J; Venz, S; Walther, T; Wolke, C1
Bindom, SM; Lazartigues, E1
Dominici, FP; Giani, JF; Gironacci, MM; Höcht, C; Mayer, MA; Muñoz, MC; Silberman, EA; Taira, CA; Turyn, D1
Arranz, C; Dominici, FP; Giani, JF; Mayer, MA; Muñoz, MC; Taira, CA; Toblli, JE; Turyn, D; Veiras, LC1
Cao, X; Li, HX; Liu, C; Lv, XH; Wang, L; Yang, JK; Yu, M; Zhang, F1
Burghi, V; Carranza, A; Dominici, FP; Giani, JF; Mayer, MA; Muñoz, MC; Taira, CA1
Hanasaki-Yamamoto, H; Hongyo, K; Kamide, K; Kawai, T; Oguro, R; Ohishi, M; Rakugi, H; Sugimoto, K; Takami, Y; Takeda, M; Takemura, Y; Takeshita, H; Takeya, Y; Tatara, Y; Yamamoto, K1
Adler, GK; Underwood, PC1

Reviews

4 review(s) available for angiotensin ii, des-phe(8)- and Insulin Sensitivity

ArticleYear
The renin-angiotensin system as a target to solve the riddle of endocrine pancreas homeostasis.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2019, Volume: 109

    Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Drug Delivery Systems; Homeostasis; Humans; Insulin Resistance; Islets of Langerhans; Peptide Fragments; Renin-Angiotensin System

2019
Modulation of the action of insulin by angiotensin-(1-7).
    Clinical science (London, England : 1979), 2014, Volume: 126, Issue:9

    Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Diabetes Mellitus, Type 2; Humans; Hypoglycemic Agents; Insulin; Insulin Resistance; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Signal Transduction

2014
The sweeter side of ACE2: physiological evidence for a role in diabetes.
    Molecular and cellular endocrinology, 2009, Apr-29, Volume: 302, Issue:2

    Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Diabetes Mellitus; Humans; Insulin Resistance; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Renin-Angiotensin System

2009
The renin angiotensin aldosterone system and insulin resistance in humans.
    Current hypertension reports, 2013, Volume: 15, Issue:1

    Topics: Adipose Tissue; Aldosterone; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Angiotensinogen; Animals; Blood Pressure; Glucose; Hemodynamics; Humans; Insulin Resistance; Models, Animal; Muscle, Skeletal; Obesity; Peptide Fragments; Peptidyl-Dipeptidase A; Renin-Angiotensin System

2013

Other Studies

25 other study(ies) available for angiotensin ii, des-phe(8)- and Insulin Sensitivity

ArticleYear
Potential role of angiotensin-(1-7) in the improvement of vascular insulin sensitivity after a bout of exercise.
    Experimental physiology, 2020, Volume: 105, Issue:4

    Topics: Angiotensin I; Animals; Insulin; Insulin Resistance; Male; Peptide Fragments; Rats; Rats, Wistar; Renin-Angiotensin System; Vasodilation

2020
Angiotensin-(1-7) Improves Integrated Cardiometabolic Function in Aged Mice.
    International journal of molecular sciences, 2020, Jul-20, Volume: 21, Issue:14

    Topics: Aging; Angiotensin I; Animals; Antihypertensive Agents; Blood Pressure; Glucose; Hypertension; Insulin; Insulin Resistance; Male; Mice, Inbred C57BL; Peptide Fragments; Renin-Angiotensin System

2020
Angiotensin-(1-7), the product of ACE2 ameliorates NAFLD by acting through its receptor Mas to regulate hepatic mitochondrial function and glycolipid metabolism.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2020, Volume: 34, Issue:12

    Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Cell Line, Tumor; Down-Regulation; Glycolipids; Hep G2 Cells; Humans; Insulin Resistance; Lipid Metabolism; Liver; Male; Mice; Mice, Inbred C57BL; Mitochondria; Non-alcoholic Fatty Liver Disease; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Signal Transduction

2020
Longdan Xiegan Tang attenuates liver injury and hepatic insulin resistance by regulating the angiotensin-converting enzyme 2/Ang (1-7)/Mas axis-mediated anti-inflammatory pathway in rats.
    Journal of ethnopharmacology, 2021, Jun-28, Volume: 274

    Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Anti-Inflammatory Agents; Chemical and Drug Induced Liver Injury; Cytokines; Drugs, Chinese Herbal; Fasting; I-kappa B Kinase; Insulin Resistance; Liver; Male; NF-kappa B; Olanzapine; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled

2021
High-intensity interval training has beneficial effects on cardiac remodeling through local renin-angiotensin system modulation in mice fed high-fat or high-fructose diets.
    Life sciences, 2017, Nov-15, Volume: 189

    Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Diet, High-Fat; Fructose; Gene Expression Regulation; High-Intensity Interval Training; Hypertension; Hypertrophy, Left Ventricular; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Peptide Fragments; Peptidyl-Dipeptidase A; Random Allocation; Receptor, Angiotensin, Type 2; Renin; Renin-Angiotensin System; Ventricular Remodeling

2017
Activation of ACE2/angiotensin (1-7) attenuates pancreatic β cell dedifferentiation in a high-fat-diet mouse model.
    Metabolism: clinical and experimental, 2018, Volume: 81

    Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Cell Dedifferentiation; Cell Lineage; Diet, High-Fat; Glucose Intolerance; Insulin; Insulin Resistance; Insulin Secretion; Insulin-Secreting Cells; Male; Mice; Mice, Inbred C57BL; Peptide Fragments; Peptidyl-Dipeptidase A; Weight Gain

2018
Aerobic exercise training prevents obesity and insulin resistance independent of the renin angiotensin system modulation in the subcutaneous white adipose tissue.
    PloS one, 2019, Volume: 14, Issue:4

    Topics: Adipose Tissue, White; Adiposity; Angiotensin I; Angiotensin II; Animals; Biomarkers; Body Weight; Feeding Behavior; Glucose; Insulin Resistance; Male; Mice, Inbred C57BL; Obesity; Peptide Fragments; Peptides; Physical Conditioning, Animal; Renin-Angiotensin System; RNA, Messenger; Subcutaneous Fat; Thermogenesis; Uncoupling Protein 1

2019
Sex differences in metabolic effects of angiotensin-(1-7) treatment in obese mice.
    Biology of sex differences, 2019, 07-17, Volume: 10, Issue:1

    Topics: Angiotensin I; Animals; Diet, High-Fat; Energy Metabolism; Female; Glucose Intolerance; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Obesity; Peptide Fragments; Sex Characteristics

2019
Angiotensin (1-7) counteracts the negative effect of angiotensin II on insulin signalling in HUVECs.
    Cardiovascular research, 2013, Jul-01, Volume: 99, Issue:1

    Topics: Angiotensin I; Angiotensin II; Animals; Cells, Cultured; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Enzyme Activation; Human Umbilical Vein Endothelial Cells; Humans; Insulin; Insulin Receptor Substrate Proteins; Insulin Resistance; Mesenteric Arteries; Mice; Nitric Oxide; Nitric Oxide Synthase Type III; Peptide Fragments; Phosphatidylinositol 3-Kinase; Phosphorylation; Proto-Oncogene Mas; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Receptors, G-Protein-Coupled; Signal Transduction; Vasodilation

2013
Oral Angiotensin-(1-7) prevented obesity and hepatic inflammation by inhibition of resistin/TLR4/MAPK/NF-κB in rats fed with high-fat diet.
    Peptides, 2013, Volume: 46

    Topics: Angiotensin I; Animals; Blood Glucose; Cholesterol; Diet, High-Fat; Glucose Tolerance Test; Inflammation; Insulin; Insulin Resistance; Lipoproteins, HDL; Liver; Male; Mitogen-Activated Protein Kinases; NF-kappa B; Obesity; Peptide Fragments; Rats; Rats, Sprague-Dawley; Resistin; Toll-Like Receptor 4; Triglycerides

2013
Angiotensin 1-7 improves insulin sensitivity by increasing skeletal muscle glucose uptake in vivo.
    Peptides, 2014, Volume: 51

    Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Captopril; Glucose; Insulin Resistance; Male; Muscle, Skeletal; Peptide Fragments; Peptidyl-Dipeptidase A; Rats; Rats, Wistar; Renin-Angiotensin System

2014
Heat shock prevents insulin resistance-induced vascular complications by augmenting angiotensin-(1-7) signaling.
    Diabetes, 2014, Volume: 63, Issue:3

    Topics: AMP-Activated Protein Kinases; Angiotensin I; Animals; Diet, High-Fat; DNA (Cytosine-5-)-Methyltransferase 1; DNA (Cytosine-5-)-Methyltransferases; DNA Methylation; Hot Temperature; HSP72 Heat-Shock Proteins; Insulin Resistance; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase Type III; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Signal Transduction; Sirtuin 1; Vasodilation

2014
Angiotensin 1-7 ameliorates diabetic cardiomyopathy and diastolic dysfunction in db/db mice by reducing lipotoxicity and inflammation.
    Circulation. Heart failure, 2014, Mar-01, Volume: 7, Issue:2

    Topics: Angiotensin I; Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetic Cardiomyopathies; Diastole; Echocardiography, Doppler; Follow-Up Studies; Inflammation; Insulin Resistance; Lipids; Male; Mice; Mice, Inbred C57BL; Peptide Fragments; Vasodilator Agents; Ventricular Dysfunction, Left; Ventricular Function; Ventricular Pressure

2014
Cross talk between angiotensin-(1-7)/Mas axis and sirtuins in adipose tissue and metabolism of high-fat feed mice.
    Peptides, 2014, Volume: 55

    Topics: Administration, Oral; Angiotensin I; Animals; Antimetabolites; Cells, Cultured; Diet, High-Fat; Drug Evaluation, Preclinical; Gene Expression; Glucose Intolerance; Hyperinsulinism; Insulin Resistance; Intra-Abdominal Fat; Lipolysis; Male; Mice; Obesity; Peptide Fragments; Primary Cell Culture; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Resistin; Resveratrol; Sirtuins; Stilbenes

2014
Regulation of insulin sensitivity, insulin production, and pancreatic β cell survival by angiotensin-(1-7) in a rat model of streptozotocin-induced diabetes mellitus.
    Peptides, 2015, Volume: 64

    Topics: Angiotensin I; Animals; Apoptosis Regulatory Proteins; Cell Survival; Diabetes Mellitus, Experimental; Disease Models, Animal; Hypoglycemic Agents; Insulin; Insulin Resistance; Insulin Secretion; Insulin-Secreting Cells; Male; Peptide Fragments; Rats; Rats, Wistar

2015
Lack of weight gain after angiotensin AT1 receptor blockade in diet-induced obesity is partly mediated by an angiotensin-(1-7)/Mas-dependent pathway.
    British journal of pharmacology, 2015, Volume: 172, Issue:15

    Topics: Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Animals, Genetically Modified; Benzimidazoles; Benzoates; Diet; Energy Intake; Energy Metabolism; Insulin Resistance; Leptin; Male; Obesity; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Rats; Receptors, G-Protein-Coupled; Signal Transduction; Telmisartan; Weight Gain; Weight Loss

2015
ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity.
    Diabetes, 2016, Volume: 65, Issue:1

    Topics: Adiponectin; Adipose Tissue; AMP-Activated Protein Kinases; Angiotensin I; Angiotensin-Converting Enzyme 2; Animals; Blood Glucose; Blotting, Western; Diet, High-Fat; Enzyme-Linked Immunosorbent Assay; Glucose Intolerance; Heart; Heart Failure; Humans; Inflammation; Insulin Resistance; Macrophages; Mice; Mice, Knockout; Myocardium; Obesity; Oxidative Stress; Peptide Fragments; Peptidyl-Dipeptidase A; Pericardium; Phosphorylation; Real-Time Polymerase Chain Reaction; Stroke Volume; Tumor Necrosis Factor-alpha; Vasodilator Agents; Weight Gain

2016
Does exercise increase insulin sensitivity through angiotensin 1-7?
    Acta physiologica (Oxford, England), 2016, Volume: 216, Issue:1

    Topics: Angiotensin I; Exercise; Humans; Hyperinsulinism; Insulin Resistance; Peptide Fragments

2016
Chronic Angiotensin-(1-7) Improves Insulin Sensitivity in High-Fat Fed Mice Independent of Blood Pressure.
    Hypertension (Dallas, Tex. : 1979), 2016, Volume: 67, Issue:5

    Topics: Analysis of Variance; Angiotensin I; Animals; Blood Glucose; Blood Pressure Determination; Body Composition; Cardiovascular Diseases; Diet, High-Fat; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Glucose Clamp Technique; Heart Function Tests; Hemodynamics; Hypertension; Infusions, Subcutaneous; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Obesity; Peptide Fragments; Random Allocation; Reference Values; Renin-Angiotensin System

2016
The Angiotensin-(1-7)/Mas Axis Improves Pancreatic β-Cell Function in Vitro and in Vivo.
    Endocrinology, 2016, Volume: 157, Issue:12

    Topics: Angiotensin I; Animals; Cyclic AMP; Homeodomain Proteins; Insulin; Insulin Resistance; Insulin Secretion; Insulin-Secreting Cells; Maf Transcription Factors, Large; Mice; Mice, Knockout; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Signal Transduction; Trans-Activators

2016
Chronic infusion of angiotensin-(1-7) improves insulin resistance and hypertension induced by a high-fructose diet in rats.
    American journal of physiology. Endocrinology and metabolism, 2009, Volume: 296, Issue:2

    Topics: Adipose Tissue; Angiotensin I; Animals; Diet; Drug Evaluation, Preclinical; Fructose; Glucose Tolerance Test; Hypertension; Infusion Pumps; Insulin; Insulin Resistance; Liver; Male; Muscle, Skeletal; Peptide Fragments; Rats; Rats, Sprague-Dawley; Signal Transduction; Time Factors

2009
Angiotensin-(1-7) improves cardiac remodeling and inhibits growth-promoting pathways in the heart of fructose-fed rats.
    American journal of physiology. Heart and circulatory physiology, 2010, Volume: 298, Issue:3

    Topics: Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Blood Pressure; Dietary Carbohydrates; Disease Models, Animal; Fructose; Hypertension; Hypertrophy, Left Ventricular; Insulin; Insulin Resistance; Male; Peptide Fragments; Protein Tyrosine Phosphatase, Non-Receptor Type 6; Rats; Rats, Sprague-Dawley; Ventricular Remodeling

2010
Angiotensin-(1-7) suppresses oxidative stress and improves glucose uptake via Mas receptor in adipocytes.
    Acta diabetologica, 2012, Volume: 49, Issue:4

    Topics: 3T3-L1 Cells; Adipocytes; Adiponectin; Angiotensin I; Animals; Cells, Cultured; Gene Expression; Glucose; Insulin Resistance; Male; Mice; NADPH Oxidases; Oxidative Stress; Peptide Fragments; Proto-Oncogene Mas; Proto-Oncogene Proteins; Reactive Oxygen Species; Receptors, G-Protein-Coupled; RNA, Messenger

2012
The Mas receptor mediates modulation of insulin signaling by angiotensin-(1-7).
    Regulatory peptides, 2012, Aug-20, Volume: 177, Issue:1-3

    Topics: Adipose Tissue; Angiotensin I; Angiotensin II; Animals; Blood Pressure; Dyslipidemias; Fructose; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; GTPase-Activating Proteins; Hypertension; Insulin; Insulin Resistance; Liver; Male; Muscle, Skeletal; Peptide Fragments; Phosphorylation; Proto-Oncogene Mas; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Signal Transduction

2012
Loss of ACE2 exaggerates high-calorie diet-induced insulin resistance by reduction of GLUT4 in mice.
    Diabetes, 2013, Volume: 62, Issue:1

    Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Diet, High-Fat; Dietary Carbohydrates; Energy Intake; Glucose; Glucose Intolerance; Glucose Transporter Type 4; Homeostasis; Insulin Resistance; MEF2 Transcription Factors; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle, Skeletal; Myoblasts; Myogenic Regulatory Factors; Peptide Fragments; Peptidyl-Dipeptidase A

2013